Skip to main content

Advertisement

Log in

Detection of the MYD88L265P and CXCR4S338X mutations by cell-free DNA in Waldenström macroglobulinemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

We aimed to detect the MYD88L265P and CXCR4S338X mutations in cell-free DNA (cfDNA) in patients with Waldenström macroglobulinemia (WM). We collected peripheral blood and paired bone marrow aspirates from 27 WM patients (including 16 patients with newly diagnosed WM, 3 patients with WM in relapse and 8 patients with WM during treatment). cfDNA was extracted from peripheral blood using a QIAamp Circulating Nucleic Acid Kit. The MYD88L265P and CXCR4S338X mutations were detected by real-time allele-specific PCR (AS-PCR) in cfDNA and genomic DNA (gDNA) extracted from bone marrow aspirates. The sensitivity of real-time AS-PCR for detecting MYD88L265P in cfDNA was determined using a serial dilution of 10%, 2%, 0.4% and 0.08% MYD88L265P cfDNA in wild-type cfDNA. Among the 27 patients, MYD88L265P was detected in 88.9% of them in gDNA and in 85.2% of them in cfDNA, with a concordance rate of 96.3%. The concordance rates were 93.8%, 100% and 100% in patients with newly diagnosed WM, patients with WM in relapse and patients with WM during treatment, respectively. The sensitivity of real-time AS-PCR for detecting MYD88L265P in cfDNA was 0.4%. CXCR4S338X was detected in 6.3% of the 16 newly diagnosed WM patients in both gDNA and cfDNA, with a concordance rate of 100.0%. It is feasible to apply cfDNA to detect MYD88L265P and CXCR4S338X in WM patients with a high concordance rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Owen RG, Treon SP, Al-Katib A, Fonseca R, Greipp PR, McMaster ML, Morra E, Pangalis GA, San Miguel JF, Branagan AR, Dimopoulos MA (2003) Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol 30:110–115. https://doi.org/10.1053/sonc.2003.50082

    Article  PubMed  Google Scholar 

  2. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, Arcaini L, Pinkus GS, Rodig SJ, Sohani AR, Harris NL, Laramie JM, Skifter DA, Lincoln SE, Hunter ZR (2012) MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med 367:826–833. https://doi.org/10.1056/NEJMoa1200710

    Article  CAS  PubMed  Google Scholar 

  3. Xu L, Hunter ZR, Yang G, Cao Y, Liu X, Manning R, Tripsas C, Chen J, Patterson CJ, Kluk M, Kanan S, Castillo J, Lindeman N, Treon SP (2014) Detection of MYD88 L265P in peripheral blood of patients with Waldenstrom’s macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Leukemia 28:1698–1704. https://doi.org/10.1038/leu.2014.65

    Article  CAS  PubMed  Google Scholar 

  4. Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ, Patterson CJ, Buhrlage SJ, Gray N, Tai YT, Anderson KC, Hunter ZR, Treon SP (2013) A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood 122:1222–1232. https://doi.org/10.1182/blood-2012-12-475111

    Article  CAS  PubMed  Google Scholar 

  5. Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465:885–890. https://doi.org/10.1038/nature09121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Treon SP, Tripsas CK, Meid K, Warren D, Varma G, Green R, Argyropoulos KV, Yang G, Cao Y, Xu L, Patterson CJ, Rodig S, Zehnder JL, Aster JC, Harris NL, Kanan S, Ghobrial I, Castillo JJ, Laubach JP, Hunter ZR, Salman Z, Li J, Cheng M, Clow F, Graef T, Palomba ML, Advani RH (2015) Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N Engl J Med 372:1430–1440. https://doi.org/10.1056/NEJMoa1501548

    Article  CAS  PubMed  Google Scholar 

  7. Cao XX, Meng Q, Cai H, He TH, Zhang CL, Su W, Sun J, Li Y, Xu W, Zhou DB, Li J (2017) Detection of MYD88 L265P and WHIM-like CXCR4 mutation in patients with IgM monoclonal gammopathy related disease. Ann Hematol 96:971–976. https://doi.org/10.1007/s00277-017-2968-z

    Article  CAS  PubMed  Google Scholar 

  8. Xu L, Hunter ZR, Tsakmaklis N, Cao Y, Yang G, Chen J, Liu X, Kanan S, Castillo JJ, Tai YT, Zehnder JL, Brown JR, Carrasco RD, Advani R, Sabile JM, Argyropoulos K, Lia Palomba M, Morra E, Trojani A, Greco A, Tedeschi A, Varettoni M, Arcaini L, Munshi NM, Anderson KC, Treon SP (2016) Clonal architecture of CXCR4 WHIM-like mutations in Waldenstrom Macroglobulinaemia. Br J Haematol 172:735–744. https://doi.org/10.1111/bjh.13897

    Article  CAS  PubMed  Google Scholar 

  9. Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR (2014) Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood 123:2791–2796. https://doi.org/10.1182/blood-2014-01-550905

    Article  CAS  PubMed  Google Scholar 

  10. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

    CAS  PubMed  Google Scholar 

  11. Oberle A, Brandt A, Voigtlaender M, Thiele B, Radloff J, Schulenkorf A, Alawi M, Akyuz N, Marz M, Ford CT, Krohn-Grimberghe A, Binder M (2017) Monitoring multiple myeloma by next-generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell-free myeloma DNA. Haematologica 102:1105–1111. https://doi.org/10.3324/haematol.2016.161414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yeh P, Hunter T, Sinha D, Ftouni S, Wallach E, Jiang D, Chan YC, Wong SQ, Silva MJ, Vedururu R, Doig K, Lam E, Arnau GM, Semple T, Wall M, Zivanovic A, Agarwal R, Petrone P, Jones K, Westerman D, Blombery P, Seymour JF, Papenfuss AT, Dawson MA, Tam CS, Dawson SJ (2017) Circulating tumour DNA reflects treatment response and clonal evolution in chronic lymphocytic leukaemia. Nat Commun 8:14756. https://doi.org/10.1038/ncomms14756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bagratuni T, Ntanasis-Stathopoulos I, Gavriatopoulou M, Mavrianou-Koutsoukou N, Liacos C, Patseas D, Kanellias N, Migkou M, Ziogas DC, Eleutherakis-Papaiakovou E, Roussou M, Fotiou D, Terpos E, Kastritis E, Dimopoulos MA (2018) Detection of MYD88 and CXCR4 mutations in cell-free DNA of patients with IgM monoclonal gammopathies. Leukemia 32:2617–2625. https://doi.org/10.1038/s41375-018-0197-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, Lindeman N, Lockwood CM, Rai AJ, Schilsky RL, Tsimberidou AM, Vasalos P, Billman BL, Oliver TK, Bruinooge SS, Hayes DF, Turner NC (2018) Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol 36:1631–1641. https://doi.org/10.1200/jco.2017.76.8671

    Article  CAS  PubMed  Google Scholar 

  15. Ansari J, Yun JW, Kompelli AR, Moufarrej YE, Alexander JS, Herrera GA, Shackelford RE (2016) The liquid biopsy in lung cancer. Genes Cancer 7:355–367. https://doi.org/10.18632/genesandcancer.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G, Ponzetti A, Cremolini C, Amatu A, Lauricella C, Lamba S, Hobor S, Avallone A, Valtorta E, Rospo G, Medico E, Motta V, Antoniotti C, Tatangelo F, Bellosillo B, Veronese S, Budillon A, Montagut C, Racca P, Marsoni S, Falcone A, Corcoran RB, di Nicolantonio F, Loupakis F, Siena S, Sartore-Bianchi A, Bardelli A (2015) Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 21:795–801. https://doi.org/10.1038/nm.3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rossi D, Diop F, Spaccarotella E, Monti S, Zanni M, Rasi S, Deambrogi C, Spina V, Bruscaggin A, Favini C, Serra R, Ramponi A, Boldorini R, Foà R, Gaidano G (2017) Diffuse large B-cell lymphoma genotyping on the liquid biopsy. Blood 129:1947–1957. https://doi.org/10.1182/blood-2016-05-719641

    Article  CAS  PubMed  Google Scholar 

  18. Roschewski M, Dunleavy K, Pittaluga S, Moorhead M, Pepin F, Kong K, Shovlin M, Jaffe ES, Staudt LM, Lai C, Steinberg SM, Chen CC, Zheng J, Willis TD, Faham M, Wilson WH (2015) Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol 16:541–549. https://doi.org/10.1016/s1470-2045(15)70106-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Spina V, Bruscaggin A, Cuccaro A, Martini M, di Trani M, Forestieri G, Manzoni M, Condoluci A, Arribas A, Terzi-di-Bergamo L, Locatelli SL, Cupelli E, Ceriani L, Moccia AA, Stathis A, Nassi L, Deambrogi C, Diop F, Guidetti F, Cocomazzi A, Annunziata S, Rufini V, Giordano A, Neri A, Boldorini R, Gerber B, Bertoni F, Ghielmini M, Stüssi G, Santoro A, Cavalli F, Zucca E, Larocca LM, Gaidano G, Hohaus S, Carlo-Stella C, Rossi D (2018) Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood 131:2413–2425. https://doi.org/10.1182/blood-2017-11-812073

    Article  CAS  PubMed  Google Scholar 

  20. Drandi D, Genuardi E, Dogliotti I, Ferrante M, Jiménez C, Guerrini F, Schirico ML, Mantoan B, Muccio V, Lia G, Zaccaria GM, Omedè P, Passera R, Orsucci L, Benevolo G, Cavallo F, Galimberti S, Sanz RG, Boccadoro M, Ladetto M, Ferrero S (2018) Highly sensitive MYD88(L265P) mutation detection by droplet digital polymerase chain reaction in Waldenstrom macroglobulinemia. Haematologica 103:1029–1037. https://doi.org/10.3324/haematol.2017.186528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Varettoni M, Zibellini S, Defrancesco I, Ferretti VV, Rizzo E, Malcovati L, Gallì A, Porta MGD, Boveri E, Arcaini L, Candido C, Paulli M, Cazzola M (2017) Pattern of somatic mutations in patients with Waldenstrom macroglobulinemia or IgM monoclonal gammopathy of undetermined significance. Haematologica 102:2077–2085. https://doi.org/10.3324/haematol.2017.172718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurtz DM, Scherer F, Jin MC, Soo J, Craig AFM, Esfahani MS, Chabon JJ, Stehr H, Liu CL, Tibshirani R, Maeda LS, Gupta NK, Khodadoust MS, Advani RH, Levy R, Newman AM, Dührsen U, Hüttmann A, Meignan M, Casasnovas RO, Westin JR, Roschewski M, Wilson WH, Gaidano G, Rossi D, Diehn M, Alizadeh AA (2018) Circulating tumor DNA measurements as early outcome predictors in diffuse large B-cell lymphoma. J Clin Oncol 36:2845–2853. https://doi.org/10.1200/jco.2018.78.5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Manier S, Park J, Capelletti M, Bustoros M, Freeman SS, Ha G, Rhoades J, Liu CJ, Huynh D, Reed SC, Gydush G, Salem KZ, Rotem D, Freymond C, Yosef A, Perilla-Glen A, Garderet L, van Allen EM, Kumar S, Love JC, Getz G, Adalsteinsson VA, Ghobrial IM (2018) Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun 9:1691. https://doi.org/10.1038/s41467-018-04001-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prakash K, Aggarwal S, Bhardwaj S, Ramakrishna G, Pandey CK (2017) Serial perioperative cell-free DNA levels in donors and recipients undergoing living donor liver transplantation. Acta Anaesthesiol Scand 61:1084–1094. https://doi.org/10.1111/aas.12947

    Article  CAS  PubMed  Google Scholar 

  25. Truszewska A, Foroncewicz B, Paczek L (2017) The role and diagnostic value of cell-free DNA in systemic lupus erythematosus. Clin Exp Rheumatol 35:330–336

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the patients and their families who participated in this study.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y.W. and M.N.J. were the main researchers and contributed to writing this manuscript. Y.Q. and H.C. helped collecting blood and bone marrow samples and did the technical work. D.B.Z., J.L. and X.X.C. planned the study and revised the manuscript. All authors agree that this manuscript can be published in the Journal of Annals of Hematology.

Corresponding author

Correspondence to Xin-Xin Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was performed in accordance with the ethical standards of the Institutional Ethics Committee of Peking Union Medical College Hospital at the Chinese Academy of Medical Sciences & Peking Union Medical College and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Written or verbal informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YY., Jia, MN., Cai, H. et al. Detection of the MYD88L265P and CXCR4S338X mutations by cell-free DNA in Waldenström macroglobulinemia. Ann Hematol 99, 1763–1769 (2020). https://doi.org/10.1007/s00277-020-04139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-020-04139-7

Keywords

Navigation