Skip to main content
Log in

Functional polymorphisms in the human β4 subunit of nicotinic acetylcholine receptors

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract.

Human nicotinic acetylcholine receptor (nAChR) polymorphisms occur in different ethnic populations and may result in differences in nAChR ion channel properties. We have identified four nAChR beta 4 subunit (β4) nucleotide variants: 392C→T, 526C→T, 538A→G, and 1519A→G. Their corresponding amino acid substitutions are: Thr to Ile at codon 91 (T91I), Arg to Trp at codon 136 (R136W), Ser to Gly at codon 140 (S140G), and Met to Val at codon 467 (M467V), respectively. The nAChR ion channel properties of these variants were studied and compared with the more-common (wild-type) allele as wild-types. The nAChRs (α4β4 channels) were expressed heterologously in Xenopus oocytes and studied using the two-electrode voltage clamp technique to reveal functional differences between the wild-type and the variants. The receptors containing the R136W and M467V mutations (or variants) had a higher sensitivity to acetylcholine and lower EC50 than the wild-type. The T91I mutation had lower sensitivity to acetylcholine and the EC50 was larger than in wild-type nAChRs. The S140G mutation had a dose-response relationship that was similar to the wild-type. The T91I, R136W, and M467V mutations (or variants) also showed a slightly greater degree of steady-state desensitization than the wild-type in response to a 30-min exposure to one tenth of their EC50. The present results demonstrate that human β4 nAChR DNA polymorphisms result in functional changes, and suggest that certain individuals with those variants may be more or less sensitive to cholinergic drugs or to dysfunctions associated with nicotinic cholinergic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Changeux JP, Devillers-Thiery A, Chemouilli P (1984) Acetylcholine receptor: an allosteric protein. Science 225:1335–1345

    CAS  PubMed  Google Scholar 

  2. Lal R, Yu L (1993) Atomic force microscopy of cloned nicotinic acetylcholine receptor expressed in Xenopus oocytes. Proc Natl Acad Sci U S A 90:7280–7284

    CAS  PubMed  Google Scholar 

  3. Garcia-Guzman M, Sala F, Sala S, Campos-Caro A, Stuhmer W, Gutierrez LM, Criado M (1995) Alpha-Bungarotoxin-sensitive nicotinic receptors on bovine chromaffin cells: molecular cloning, functional expression and alternative splicing of the alpha 7 subunit. Eur J Neurosci 7:647–655

    CAS  PubMed  Google Scholar 

  4. Sankararamakrishnan R, Adcock C, Sansom MS (1996) The pore domain of the nicotinic acetylcholine receptor: molecular modeling, pore dimensions, and electrostatics. Biophys J 71:1659–1671

    CAS  PubMed  Google Scholar 

  5. Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114

    Article  CAS  PubMed  Google Scholar 

  6. Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458

    Article  CAS  PubMed  Google Scholar 

  7. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 424:949–955

    Article  Google Scholar 

  8. Alkondon M, Pereira EF, Eisenberg HM, Albuquerque EX (2000) Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and disinhibition of neuronal networks. J Neurosci 20:66–75

    CAS  PubMed  Google Scholar 

  9. Lena C, Changeux JP, Mulle C (1993) Evidence for “preterminal” nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus. J Neurosci 13:2680–2688

    CAS  PubMed  Google Scholar 

  10. Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, Lena C, Le Novere N, Marubio L, Picciotto M, Zoli M (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Brain Res Rev 26:198–216

    Article  CAS  PubMed  Google Scholar 

  11. Sorenson EM, Shiroyama T, Kitai ST (1998) Postsynaptic nicotinic receptors on dopaminergic neurons in the substantia nigra pars compacta of the rat. Neuroscience 87:659–673

    Article  CAS  PubMed  Google Scholar 

  12. Cao YJ, Peng YY (1998) Activation of nicotinic receptor-induced postsynaptic responses to luteinizing hormone-releasing hormone in bullfrog sympathetic ganglia via a Na+-dependent mechanism. Proc Natl Acad Sci U S A 95:12689–12694

    Article  CAS  PubMed  Google Scholar 

  13. Ji D, Lape R, Dani JA (2001) Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31:131–141

    Article  CAS  PubMed  Google Scholar 

  14. McGehee DS (2002) Nicotinic receptors and hippocampal synaptic plasticity—it’s all in the timing. Trends Neurosci 25:171–172

    Article  CAS  PubMed  Google Scholar 

  15. Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401–404

    Article  CAS  PubMed  Google Scholar 

  16. Dani JA, De Biasi M (2001) Cellular mechanisms of nicotine addiction. Pharmacol Biochem Behav 70:439–446

    Article  CAS  PubMed  Google Scholar 

  17. Dani JA, Heinemann S (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905–908

    Article  CAS  PubMed  Google Scholar 

  18. Bertrand S, Weiland S, Berkovic SF, Steinlein OK, Bertrand D (1998) Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy. Br J Pharmacol 125:751–760

    CAS  PubMed  Google Scholar 

  19. Steinlein OK, Mulley JC, Propping P, Wallace RH, Phillips HA, Sutherland GR, Scheffer IE, Berkovic SF (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 11:201–203

    Google Scholar 

  20. Phillips HA, Favre I, Kirkpatrick M, Zuberi SM, Goudie D, Heron SE, Scheffer IE, Sutherland GR, Berkovic SF, Bertrand D, Mulley JC (2001) CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet 68:225–231

    Article  CAS  PubMed  Google Scholar 

  21. Labarca C, Schwarz J, Deshpande P, Schwarz S, Nowak MW, Fonck C, Nashmi R, Kofuji P, Dang H, Shi W, Fidan M, Khakh BS, Chen Z, Bowers BJ, Boulter J, Wehner JM, Lester HA (2001) Point mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety. Proc Natl Acad Sci U S A 98:2786–2791

    Article  CAS  PubMed  Google Scholar 

  22. Salas R, Pieri F, Fung B, Dani JA, De Biasi M (2003) Altered anxiety-related responses in mutant mice lacking the beta4 subunit of the nicotinic receptor. J Neurosci 23:6255–6263

    CAS  PubMed  Google Scholar 

  23. Marubio LM, Mar Arroyo-Jimenez M del, Cordero-Erausquin M, Lena C, Le Novere N, Kerchove d’Exaerde A de, Huchet M, Damaj MI, Changeux JP (1999) Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 398:805–810

    Article  CAS  PubMed  Google Scholar 

  24. Pidoplichko VI, Noguchi J, Areola OO, Liang Y, Peterson J, Zhang T, Dani JA (2004) Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learn Mem 11:60–69

    Article  PubMed  Google Scholar 

  25. Lena C, Changeux JP (1998) Allosteric nicotinic receptors, human pathologies. J Physiol Paris 92:63–74

    Article  CAS  PubMed  Google Scholar 

  26. Rust G, Burgunder JM, Lauterburg TE, Cachelin AB (1994) Expression of neuronal nicotinic acetylcholine receptor subunit genes in the rat autonomic nervous system. Eur J Neurosci 6:478–485

    CAS  PubMed  Google Scholar 

  27. Xu W, Orr-Urtreger A, Nigro F, Gelber S, Sutcliffe CB, Armstrong D, Patrick JW, Role LW, Beaudet AL, De Biasi M (1999) Multiorgan autonomic dysfunction in mice lacking the beta2 and the beta4 subunits of neuronal nicotinic acetylcholine receptors. J Neurosci 19:9298–9305

    CAS  PubMed  Google Scholar 

  28. Wang F, Gerzanich V, Wells GB, Anand R, Peng X, Keyser K, Lindstrom J (1996) Assembly of human neuronal nicotinic receptor alpha5 subunits with alpha3, beta2, and beta4 subunits. J Biol Chem 271:17656–17665

    Article  CAS  PubMed  Google Scholar 

  29. Chavez-Noriega LE, Crona JH, Washburn MS, Urrutia A, Elliott KJ, Johnson EC (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 expressed in Xenopus oocytes. J Pharmacol Exp Ther 280:346–356

    CAS  PubMed  Google Scholar 

  30. Dineley-Miller K, Patrick J (1992) Gene transcripts for the nicotinic acetylcholine receptor subunit, beta4, are distributed in multiple areas of the rat central nervous system. Brain Res Mol Brain Res 16:339–344

    Article  CAS  PubMed  Google Scholar 

  31. Quik M, Polonskaya Y, Gillespie A, Jakowec M, Lloyd GK, Langston JW (2000) Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization. J Comp Neurol 425:58–69

    Article  CAS  PubMed  Google Scholar 

  32. Rubboli F, Court JA, Sala C, Morris C, Chini B, Perry E, Clementi F (1994) Distribution of nicotinic receptors in the human hippocampus and thalamus. Eur J Neurosci 6:1596–1604

    CAS  PubMed  Google Scholar 

  33. Quick MW, Ceballos RM, Kasten M, McIntosh JM, Lester RA (1999) Alpha3beta4 subunit-containing nicotinic receptors dominate function in rat medial habenula neurons. Neuropharmacology 38:769–783

    Article  CAS  PubMed  Google Scholar 

  34. Klink R, Kerchove A de, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21:1452–1463

    CAS  PubMed  Google Scholar 

  35. Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314–335

    CAS  PubMed  Google Scholar 

  36. Wang N, Orr-Urtreger A, Chapman J, Rabinowitz R, Korczyn AD (2003) Deficiency of nicotinic acetylcholine receptor beta 4 subunit causes autonomic cardiac and intestinal dysfunction. Mol Pharmacol 63:574–580

    Article  CAS  PubMed  Google Scholar 

  37. Salas R, Cook KD, Bassetto L, De Biasi M (2004) The alpha3 and beta4 nicotinic acetylcholine receptor subunits are necessary for nicotine-induced seizures and hypolocomotion in mice. Neuropharmacology 47:401–407

    Article  PubMed  Google Scholar 

  38. Bercovich D, Beaudet AL (2003) Denaturing high-performance liquid chromatography for the detection of mutations and polymorphisms in UBE3A. Genet Test 7:189–194

    Article  CAS  PubMed  Google Scholar 

  39. Sine SM, Steinbach JH (1984) Agonists block currents through acetylcholine receptor channels. Biophys J 46:277–283

    CAS  PubMed  Google Scholar 

  40. Lev-Lehman E, Bercovich D, Xu W, Stockton DW, Beaudet AL (2001) Characterization of the human beta4 nAChR gene and polymorphisms in CHRNA3 and CHRNB4. J Hum Genet 46:362–366

    Article  CAS  PubMed  Google Scholar 

  41. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  PubMed  Google Scholar 

  42. Bertrand D, Picard F, Le Hellard S, Weiland S, Favre I, Phillips H, Bertrand S, Berkovic SF, Malafosse A, Mulley J (2002) How mutations in the nAChRs can cause ADNFLE epilepsy. Epilepsia 43 [Suppl 5]:112–122

  43. Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C, Hussy N, Bertrand S, Ballivet M, Changeux JP (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849

    Article  CAS  PubMed  Google Scholar 

  44. Broide RS, Salas R, Ji D, Paylor R, Patrick JW, Dani JA, De Biasi M (2002) Increased sensitivity to nicotine-induced seizures in mice expressing the L250T alpha 7 nicotinic acetylcholine receptor mutation. Mol Pharmacol 61:695–705

    Article  CAS  PubMed  Google Scholar 

  45. Sine SM (2002) The nicotinic receptor ligand binding domain. J Neurobiol 53:431–446

    Article  CAS  PubMed  Google Scholar 

  46. Bouzat C, Gumilar F, Spitzmaul G, Wang HL, Rayes D, Hansen SB, Taylor P, Sine SM (2004) Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature 430:896–900

    Article  CAS  PubMed  Google Scholar 

  47. Brejc K, Dijk WJ van, Klaassen RV, Schuurmans M, Der Oost J van, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276

    Article  CAS  PubMed  Google Scholar 

  48. Sine SM, Shen XM, Wang HL, Ohno K, Lee WY, Tsujino A, Brengmann J, Bren N, Vajsar J, Engel AG (2002) Naturally occurring mutations at the acetylcholine receptor binding site independently alter ACh binding and channel gating. J Gen Physiol 120:483–496

    Article  CAS  PubMed  Google Scholar 

  49. Tamamizu S, Guzman GR, Santiago J, Rojas LV, McNamee MG, Lasalde-Dominicci JA (2000) Functional effects of periodic tryptophan substitutions in the alpha M4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 39:4666–4673

    Article  CAS  PubMed  Google Scholar 

  50. Lee YH, Li L, Lasalde J, Rojas L, McNamee M, Ortiz-Miranda SI, Pappone P (1994) Mutations in the M4 domain of Torpedo californica acetylcholine receptor dramatically alter ion channel function. Biophys J 66:646–653

    CAS  PubMed  Google Scholar 

  51. Peto R, Lopez AD, Boreham J, Thun M, Heath C (1992) Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet 339:1268–1278

    Article  CAS  PubMed  Google Scholar 

  52. Anderson C, Burns DM (2000) Patterns of adolescent smoking initiation rates by ethnicity and sex. Tob Control 9 [Suppl 2]:II4–II8

    Google Scholar 

  53. DiFranza JR, Savageau JA, Fletcher K, Ockene JK, Rigotti NA, McNeill AD, Coleman M, Wood C (2004) Recollections and repercussions of the first inhaled cigarette. Addict Behav 29:261–272

    Article  PubMed  Google Scholar 

Download references

Acknowledgements.

We thank Dr. Laura Schrader and Dr. Hiroshi Tsuneki for technical help and the staff in Dr. David Sweatt’s laboratory for providing Xenopus oocytes. We thank Dr. Daniel Bertrand and Dr. Jon Lindstrom for providing human nAChR subunits. The work was supported by the National Institutes of Health grants from the National Institute of Neurological Disorders and Stroke and the National Institute on Drug Abuse. The experiments comply with the requirements for animal care for the Unites States and for Baylor College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Dani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Salas, R., Marubio, L. et al. Functional polymorphisms in the human β4 subunit of nicotinic acetylcholine receptors. Neurogenetics 6, 37–44 (2005). https://doi.org/10.1007/s10048-004-0199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-004-0199-7

Keywords

Navigation