Skip to main content

Nicotinic Acetylcholine Receptors and the Roles of the Alpha7 Subunit

  • Chapter
  • First Online:
Nicotinic Receptors

Part of the book series: The Receptors ((REC,volume 26))

  • 1136 Accesses

Abstract

Nicotinic acetylcholine receptors (nAChR) are members of the Cys-loop superfamily of ligand-gated ion channels that includes glycine, γ-aminobutyric acid (GABAA), and serotonin receptor channels. The members of the family are defined by a similar pentameric structure with five membrane-spanning subunits surrounding a central water-filled, cation-selective pore. The nAChRs are further divided into muscle and neuronal types. Muscle nAChRs comprise α1, β1, γ, and δ or ε subunits in a 2:1:1:1 stoichiometric ratio. Neuronal type nAChRs are composed of differing combinations of α and β subunits, with nine genes encoding α subunits (α2–10) and three encoding β subunits (β2–4). This review focuses on the α7 subunit, which was cloned from the chicken in 1990 and from the rat in 1993. α7 has received waning and waxing attention as its involvement in diseases, including Alzheimer’s disease and lung cancer, has been defined and redefined. For example, recent reports provide increasing evidence for α7’s involvement in the pathogenesis of Alzheimer’s disease, suggesting that further work is warranted to understand the roles of the α7 subunit normally and in pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen L. In pursuit of the high-resolution structure of nicotinic acetylcholine receptors. J Physiol. 2010;588(Pt 4):557–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Wells GB. Structural answers and persistent questions about how nicotinic receptors work. Front Biosci. 2008;13:5479–510.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Yakel JL. Gating of nicotinic ACh receptors: latest insights into ligand binding and function. J Physiol. 2010;588(Pt 4):597–602.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Tsetlin V, Hucho F. Nicotinic acetylcholine receptors at atomic resolution. Curr Opin Pharmacol. 2009;9(3):306–10.

    CAS  PubMed  Google Scholar 

  5. Kalamida D, et al. Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J. 2007;274(15):3799–845.

    CAS  PubMed  Google Scholar 

  6. Couturier S, et al. A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BgTx. Neuron. 1990;5:847–56.

    CAS  PubMed  Google Scholar 

  7. Schoepfer R, et al. Brain alpha-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron. 1990;5(1): 35–48.

    CAS  PubMed  Google Scholar 

  8. Seguela P, et al. Molecular cloning, functional properties, and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium. J Neurosci. 1993;13:596–604.

    CAS  PubMed  Google Scholar 

  9. Corringer PJ, et al. Identification of a new component of the agonist binding site of the nicotinic alpha 7 homooligomeric receptor. J Biol Chem. 1995;270(20):11749–52.

    CAS  PubMed  Google Scholar 

  10. Elgoyen AB, et al. α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell. 1994;79:705–15.

    Google Scholar 

  11. Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol. 2005;346(4):967–89.

    CAS  PubMed  Google Scholar 

  12. Brejc K, et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature. 2001;411(6835):269–76.

    CAS  PubMed  Google Scholar 

  13. Celie PH, et al. Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors. J Biol Chem. 2005;280(28):26457–66.

    CAS  PubMed  Google Scholar 

  14. Hansen SB, et al. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J. 2005;24(20):3635–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Sine SM. The nicotinic receptor ligand binding domain. J Neurobiol. 2002;53(4):431–46.

    CAS  PubMed  Google Scholar 

  16. Brams M, et al. Crystal structures of a cysteine-modified mutant in loop D of acetylcholine binding protein. J Biol Chem. 2010;286(6):4420–8.

    PubMed Central  PubMed  Google Scholar 

  17. Murray TA, et al. Alpha7beta2 nicotinic acetylcholine receptors assemble, function, and are activated primarily via their alpha7-alpha7 interfaces. Mol Pharmacol. 2012;81(2):175–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Rucktooa P, Smit AB, Sixma TK. Insight in nAChR subtype selectivity from AChBP crystal structures. Biochem Pharmacol. 2009;78(7):777–87.

    CAS  PubMed  Google Scholar 

  19. Galzi JL, et al. Functional significance of aromatic amino acids from three peptide loops of the alpha 7 neuronal nicotinic receptor site investigated by site-directed mutagenesis. FEBS Lett. 1991;294(3):198–202.

    CAS  PubMed  Google Scholar 

  20. Williams DK, et al. The effective opening of nicotinic acetylcholine receptors with single agonist binding sites. J Gen Physiol. 2011;137(4):369–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Taly A, et al. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov. 2009;8(9):733–50.

    CAS  PubMed  Google Scholar 

  22. Celie PH, et al. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron. 2004;41(6):907–14.

    CAS  PubMed  Google Scholar 

  23. Galzi JL, Changeux JP. Neurotransmitter-gated ion channels as unconventional allosteric proteins. Curr Opin Struct Biol. 1994;4(4):554–65.

    CAS  Google Scholar 

  24. Hilf RJ, Dutzler R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature. 2008;452(7185):375–9.

    CAS  PubMed  Google Scholar 

  25. Popot JL, et al. Interaction of the acetylcholine (nicotinic) receptor protein from Torpedo marmorata electric organ with monolayers of pure lipids. Eur J Biochem. 1978;85(1):27–42.

    CAS  PubMed  Google Scholar 

  26. Dani JA. Open channel structure and ion binding sites of the nicotinic acetylcholine receptor channel. J Neurosci. 1989;9(3):884–92.

    CAS  PubMed  Google Scholar 

  27. Gunthorpe MJ, Lummis SC. Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily. J Biol Chem. 2001;276(24):10977–83.

    CAS  Google Scholar 

  28. Imoto K, et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature. 1988;335(6191):645–8.

    CAS  PubMed  Google Scholar 

  29. Konno T, et al. Rings of anionic amino acids as structural determinants of ion selectivity in the acetylcholine receptor channel. Proc Biol Sci. 1991;244(1310):69–79.

    CAS  PubMed  Google Scholar 

  30. Galzi JL, et al. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature. 1992;359(6395):500–5.

    CAS  PubMed  Google Scholar 

  31. Corringer PJ, et al. Mutational analysis of the charge selectivity filter of the alpha7 nicotinic acetylcholine receptor. Neuron. 1999;22(4):831–43.

    CAS  PubMed  Google Scholar 

  32. Bertrand D, et al. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. Proc Natl Acad Sci U S A. 1993;90(15):6971–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Vernino S, et al. Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron. 1992;8(1):127–34.

    CAS  PubMed  Google Scholar 

  34. Mayer ML, Westbrook GL. Permeation and block of N-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol. 1987;394:501–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Fucile S. Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium. 2004;35(1):1–8.

    CAS  PubMed  Google Scholar 

  36. Fucile S, et al. Fractional Ca(2+) current through human neuronal alpha7 nicotinic acetylcholine receptors. Cell Calcium. 2003;34(2):205–9.

    CAS  PubMed  Google Scholar 

  37. Rogers M, Dani JA. Comparison of quantitative calcium flux through NMDA, ATP, and ACh receptor channels. Biophys J. 1995;68(2):501–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Rogers M, et al. Calcium flux through predominantly independent purinergic ATP and nicotinic acetylcholine receptors. J Neurophysiol. 1997;77(3):1407–17.

    CAS  PubMed  Google Scholar 

  39. Fucile S, et al. Human neuronal threonine-for-leucine-248 alpha 7 mutant nicotinic acetylcholine receptors are highly Ca2+ permeable. Proc Natl Acad Sci U S A. 2000;97(7): 3643–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699–729.

    CAS  PubMed  Google Scholar 

  41. Changeux JP, Edelstein SJ. Nicotinic acetylcholine receptors: from molecular biology to cognition. New York: Odile Jacob; 2005.

    Google Scholar 

  42. Gay EA, et al. Aromatic residues at position 55 of rat alpha7 nicotinic acetylcholine receptors are critical for maintaining rapid desensitization. J Physiol. 2008;586(4):1105–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Revah F, et al. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature. 1991;353(6347):846–9.

    CAS  PubMed  Google Scholar 

  44. Bertrand D, et al. Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc Natl Acad Sci U S A. 1992;89(4):1261–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Orr-Urtreger A, et al. Mice homozygous for the L250T mutation in the alpha7 nicotinic acetylcholine receptor show increased neuronal apoptosis and die within 1 day of birth. J Neurochem. 2000;74(5):2154–66.

    CAS  PubMed  Google Scholar 

  46. Millar NS, Harkness PC. Assembly and trafficking of nicotinic acetylcholine receptors (review). Mol Membr Biol. 2008;25(4):279–92.

    CAS  PubMed  Google Scholar 

  47. Gelman MS, et al. Role of the endoplasmic reticulum chaperone calnexin in subunit folding and assembly of nicotinic acetylcholine receptors. J Biol Chem. 1995;270(25):15085–92.

    CAS  PubMed  Google Scholar 

  48. Keller SH, Lindstrom J, Taylor P. Involvement of the chaperone protein calnexin and the acetylcholine receptor beta -subunit in the assembly and cell surface expression of the receptor. J Biol Chem. 1996;271(37):22871–7.

    CAS  PubMed  Google Scholar 

  49. Chang W, Gelman MS, Prives JM. Calnexin-dependent enhancement of nicotinic acetylcholine receptor assembly and surface expression. J Biol Chem. 1997;272(46):28925–32.

    CAS  PubMed  Google Scholar 

  50. Jeanclos EM, et al. The chaperone protein 14-3-3eta interacts with the nicotinic acetylcholine receptor alpha 4 subunit. Evidence for a dynamic role in subunit stabilization. J Biol Chem. 2001;276(30):28281–90.

    CAS  PubMed  Google Scholar 

  51. Wanamaker CP, Green WN. Endoplasmic reticulum chaperones stabilize nicotinic receptor subunits and regulate receptor assembly. J Biol Chem. 2007;282(43):31113–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Christianson JC, Green WN. Regulation of nicotinic receptor expression by the ubiquitin-proteasome system. EMBO J. 2004;23(21):4156–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Wanamaker CP, Christianson JC, Green WN. Regulation of nicotinic acetylcholine receptor assembly. Ann N Y Acad Sci. 2003;998:66–80.

    CAS  PubMed  Google Scholar 

  54. Castillo M, et al. Role of the N-terminal alpha-helix in biogenesis of alpha7 nicotinic receptors. J Neurochem. 2009;108(6):1399–409.

    CAS  PubMed  Google Scholar 

  55. Wang JM, et al. A transmembrane motif governs the surface trafficking of nicotinic acetylcholine receptors. Nat Neurosci. 2002;5(10):963–70.

    CAS  PubMed  Google Scholar 

  56. Pons S, et al. Critical role of the C-terminal segment in the maturation and export to the cell surface of the homopentameric alpha 7-5HT3A receptor. Eur J Neurosci. 2004;20(8): 2022–30.

    CAS  PubMed  Google Scholar 

  57. Temburni MK, Blitzblau RC, Jacob MH. Receptor targeting and heterogeneity at interneuronal nicotinic cholinergic synapses in vivo. J Physiol. 2000;525(Pt 1):21–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Ren XQ, et al. Structural determinants of alpha4beta2 nicotinic acetylcholine receptor trafficking. J Neurosci. 2005;25(28):6676–86.

    CAS  PubMed  Google Scholar 

  59. Keller SH, et al. Adjacent basic amino acid residues recognized by the COP I complex and ubiquitination govern endoplasmic reticulum to cell surface trafficking of the nicotinic acetylcholine receptor alpha-Subunit. J Biol Chem. 2001;276(21):18384–91.

    CAS  PubMed  Google Scholar 

  60. Williams BM, et al. The long internal loop of the alpha 3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo. Nat Neurosci. 1998;1(7):557–62.

    CAS  PubMed  Google Scholar 

  61. Rezvani K, et al. UBXD4, a UBX-containing protein, regulates the cell surface number and stability of alpha3-containing nicotinic acetylcholine receptors. J Neurosci. 2009;29(21): 6883–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Ficklin MB, Zhao S, Feng G. Ubiquilin-1 regulates nicotine-induced up-regulation of neuronal nicotinic acetylcholine receptors. J Biol Chem. 2005;280(40):34088–95.

    CAS  PubMed  Google Scholar 

  63. Wang Y, et al. Mouse RIC-3, an endoplasmic reticulum chaperone, promotes assembly of the alpha7 acetylcholine receptor through a cytoplasmic coiled-coil domain. J Neurosci. 2009;29(40):12625–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Lansdell SJ, et al. RIC-3 enhances functional expression of multiple nicotinic acetylcholine receptor subtypes in mammalian cells. Mol Pharmacol. 2005;68(5):1431–8.

    CAS  PubMed  Google Scholar 

  65. Halevi S, et al. The C. elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors. EMBO J. 2002;21(5):1012–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Halevi S, et al. Conservation within the RIC-3 gene family. Effectors of mammalian nicotinic acetylcholine receptor expression. J Biol Chem. 2003;278(36):34411–7.

    CAS  PubMed  Google Scholar 

  67. Kassner PD, Berg DK. Differences in the fate of neuronal acetylcholine receptor protein expressed in neurons and stably transfected cells. J Neurobiol. 1997;33(7):968–82.

    CAS  PubMed  Google Scholar 

  68. Williams ME, et al. Ric-3 promotes functional expression of the nicotinic acetylcholine receptor alpha7 subunit in mammalian cells. J Biol Chem. 2005;280(2):1257–63.

    CAS  PubMed  Google Scholar 

  69. Alexander JK, et al. Palmitoylation of nicotinic acetylcholine receptors. J Mol Neurosci. 2010;40(1–2):12–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Huh KH, Fuhrer C. Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses. Mol Neurobiol. 2002;25(1):79–112.

    CAS  PubMed  Google Scholar 

  71. Shoop RD, Yamada N, Berg DK. Cytoskeletal links of neuronal acetylcholine receptors containing alpha 7 subunits. J Neurosci. 2000;20(11):4021–9.

    CAS  PubMed  Google Scholar 

  72. Baer K, et al. PICK1 interacts with alpha7 neuronal nicotinic acetylcholine receptors and controls their clustering. Mol Cell Neurosci. 2007;35(2):339–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Berg DK, et al. Nicotinic signal transduction machinery. J Mol Neurosci. 2006;30(1–2): 149–52.

    CAS  PubMed  Google Scholar 

  74. Sheng M. Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci U S A. 2001;98(13):7058–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Fabian-Fine R, et al. Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci. 2001;21(20):7993–8003.

    CAS  PubMed  Google Scholar 

  76. Farias GG, et al. Wnt-7a induces presynaptic colocalization of alpha 7-nicotinic acetylcholine receptors and adenomatous polyposis coli in hippocampal neurons. J Neurosci. 2007;27(20):5313–25.

    CAS  PubMed  Google Scholar 

  77. Drisdel RC, Manzana E, Green WN. The role of palmitoylation in functional expression of nicotinic alpha7 receptors. J Neurosci. 2004;24(46):10502–10.

    CAS  PubMed  Google Scholar 

  78. Chen D, Dang H, Patrick JW. Contributions of N-linked glycosylation to the expression of a functional alpha7-nicotinic receptor in Xenopus oocytes. J Neurochem. 1998;70(1):349–57.

    CAS  PubMed  Google Scholar 

  79. Dellisanti CD, et al. Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat Neurosci. 2007;10(8):953–62.

    CAS  PubMed  Google Scholar 

  80. Peng X, et al. Chronic nicotine treatment up-regulates alpha3 and alpha7 acetylcholine receptor subtypes expressed by the human neuroblastoma cell line SH-SY5Y. Mol Pharmacol. 1997;51(5):776–84.

    CAS  PubMed  Google Scholar 

  81. Gaimarri A, et al. Regulation of neuronal nicotinic receptor traffic and expression. Brain Res Rev. 2007;55(1):134–43.

    CAS  PubMed  Google Scholar 

  82. Rezvani K, et al. Nicotine regulates multiple synaptic proteins by inhibiting proteasomal activity. J Neurosci. 2007;27(39):10508–19.

    CAS  PubMed  Google Scholar 

  83. Fenster CP, et al. Desensitization of nicotinic receptors in the central nervous system. Ann N Y Acad Sci. 1999;868:620–3.

    CAS  PubMed  Google Scholar 

  84. Dani JA, Heinemann S. Molecular and cellular aspects of nicotine abuse. Neuron. 1996;16(5):905–8.

    CAS  PubMed  Google Scholar 

  85. Peng X, et al. Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol Pharmacol. 1994;46(3):523–30.

    CAS  PubMed  Google Scholar 

  86. Kuryatov A, et al. Nicotine acts as a pharmacological chaperone to up-regulate human alpha4beta2 acetylcholine receptors. Mol Pharmacol. 2005;68(6):1839–51.

    CAS  PubMed  Google Scholar 

  87. Rezvani K, Teng Y, De Biasi M. The ubiquitin-proteasome system regulates the stability of neuronal nicotinic acetylcholine receptors. J Mol Neurosci. 2010;40(1–2):177–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Wevers A. Localisation of pre- and postsynaptic cholinergic markers in the human brain. Behav Brain Res. 2010;221(2):341–55.

    PubMed  Google Scholar 

  89. Cooke JP, Ghebremariam YT. Endothelial nicotinic acetylcholine receptors and angiogenesis. Trends Cardiovasc Med. 2008;18(7):247–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Conejero-Goldberg C, Davies P, Ulloa L. Alpha7 nicotinic acetylcholine receptor: a link between inflammation and neurodegeneration. Neurosci Biobehav Rev. 2008;32(4): 693–706.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004;74(6):363–96.

    CAS  PubMed  Google Scholar 

  92. McCann CM, et al. The cholinergic antagonist alpha-bungarotoxin also binds and blocks a subset of GABA receptors. Proc Natl Acad Sci U S A. 2006;103(13):5149–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Colquhoun LM, Patrick JW. Pharmacology of neuronal nicotinic acetylcholine receptor subtypes. Adv Pharmacol. 1997;39:191–220.

    CAS  PubMed  Google Scholar 

  94. Chen D, Patrick JW. The alpha-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the alpha7 subunit. J Biol Chem. 1997;272(38):24024–9.

    CAS  PubMed  Google Scholar 

  95. Clarke PB, et al. Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. J Neurosci. 1985;5(5):1307–15.

    CAS  PubMed  Google Scholar 

  96. Moser N, et al. Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures. J Neurochem. 2007;102(2):479–92.

    CAS  PubMed  Google Scholar 

  97. Herber DL, et al. Biochemical and histochemical evidence of nonspecific binding of alpha7nAChR antibodies to mouse brain tissue. J Histochem Cytochem. 2004;52(10): 1367–76.

    CAS  PubMed  Google Scholar 

  98. Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol. 2008;154(8):1558–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Girod R, et al. Facilitation of glutamatergic neurotransmission by presynaptic nicotinic acetylcholine receptors. Neuropharmacology. 2000;39(13):2715–25.

    CAS  PubMed  Google Scholar 

  100. Aramakis VB, Metherate R. Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. J Neurosci. 1998;18(20):8485–95.

    CAS  PubMed  Google Scholar 

  101. McGehee DS, et al. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science. 1995;269:1692–6.

    CAS  PubMed  Google Scholar 

  102. De Filippi G, Baldwinson T, Sher E. Nicotinic receptor modulation of neurotransmitter release in the cerebellum. Prog Brain Res. 2005;148:307–20.

    PubMed  Google Scholar 

  103. Gray R, et al. Hippocampal synaptic transmission enhanced by low concentration of nicotine. Nature. 1996;383:713–6.

    CAS  PubMed  Google Scholar 

  104. Castro NG, Albuquerque EX. Alpha-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophys J. 1995;68(2):516–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Pang ZP, Sudhof TC. Cell biology of Ca2+-triggered exocytosis. Curr Opin Cell Biol. 2010;22(4):496–505.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Cheng Q, Yakel JL. Presynaptic alpha7 nicotinic acetylcholine receptors enhance hippocampal mossy fiber glutamatergic transmission via PKA activation. J Neurosci. 2014;34(1): 124–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Vernino S, et al. Quantitative measurement of calcium flux through muscle and neuronal nicotinic acetylcholine receptors. J Neurosci. 1994;14(9):5514–24.

    CAS  PubMed  Google Scholar 

  108. Radcliffe KA, Dani JA. Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission. J Neurosci. 1998;18(18):7075–83.

    CAS  PubMed  Google Scholar 

  109. Placzek AN, Zhang TA, Dani JA. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus. Acta Pharmacol Sin. 2009;30(6):752–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Fujii S, Sumikawa K. Nicotine accelerates reversal of long-term potentiation and enhances long-term depression in the rat hippocampal CA1 region. Brain Res. 2001;894(2):340–6.

    CAS  PubMed  Google Scholar 

  111. Fujii S, Sumikawa K. Acute and chronic nicotine exposure reverse age-related declines in the induction of long-term potentiation in the rat hippocampus. Brain Res. 2001;894(2):347–53.

    CAS  PubMed  Google Scholar 

  112. Ji D, Lape R, Dani JA. Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron. 2001;31(1):131–41.

    CAS  PubMed  Google Scholar 

  113. Burli T, et al. Single particle tracking of alpha7 nicotinic AChR in hippocampal neurons reveals regulated confinement at glutamatergic and GABAergic perisynaptic sites. PLoS One. 2010;5(7):e11507.

    PubMed Central  PubMed  Google Scholar 

  114. Freedman R, et al. Alpha-bungarotoxin binding to hippocampal interneurons: immunocytochemical characterization and effects on growth factor expression. J Neurosci. 1993;13(5): 1965–75.

    CAS  PubMed  Google Scholar 

  115. Frazier CJ, et al. Synaptic potentials mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J Neurosci. 1998;18(20):8228–35.

    CAS  PubMed  Google Scholar 

  116. Ji D, Dani JA. Inhibition and disinhibition of pyramidal neurons by activation of nicotinic receptors on hippocampal interneurons. J Neurophysiol. 2000;83(5):2682–90.

    CAS  PubMed  Google Scholar 

  117. Buhler AV, Dunwiddie TV. Alpha7 nicotinic acetylcholine receptors on GABAergic interneurons evoke dendritic and somatic inhibition of hippocampal neurons. J Neurophysiol. 2002;87(1):548–57.

    CAS  PubMed  Google Scholar 

  118. Frazier CJ, Strowbridge BW, Papke RL. Nicotinic receptors on local circuit neurons in dentate gyrus: a potential role in regulation of granule cell excitability. J Neurophysiol. 2003;89(6):3018–28.

    CAS  PubMed  Google Scholar 

  119. Castro NG, Albuquerque EX. Brief-lifetime, fast-inactivating ion channels account for the alpha-bungarotoxin-sensitive nicotinic response in hippocampal neurons. Neurosci Lett. 1993;164(1–2):137–40.

    CAS  PubMed  Google Scholar 

  120. Poisik OV, et al. Functional alpha7-containing nicotinic acetylcholine receptors localize to cell bodies and proximal dendrites in the rat substantia nigra pars reticulata. J Physiol. 2008;586(5):1365–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Khiroug L, et al. Functional mapping and Ca2+ regulation of nicotinic acetylcholine receptor channels in rat hippocampal CA1 neurons. J Neurosci. 2003;23(27):9024–31.

    CAS  PubMed  Google Scholar 

  122. Xu J, Zhu Y, Heinemann SF. Identification of sequence motifs that target neuronal nicotinic receptors to dendrites and axons. J Neurosci. 2006;26(38):9780–93.

    CAS  PubMed  Google Scholar 

  123. Papke RL, Bencherif M, Lippiello P. An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compounds indicates that choline is selective for the alpha 7 subtype. Neurosci Lett. 1996;213(3):201–4.

    CAS  PubMed  Google Scholar 

  124. Alkondon M, et al. Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons. Eur J Neurosci. 1997;9(12):2734–42.

    CAS  PubMed  Google Scholar 

  125. Klein J, et al. Uptake and metabolism of choline by rat brain after acute choline administration. J Neurochem. 1992;58(3):870–6.

    CAS  PubMed  Google Scholar 

  126. Klein RC, Yakel JL. Functional somato-dendritic alpha7-containing nicotinic acetylcholine receptors in the rat basolateral amygdala complex. J Physiol. 2006;576(Pt 3):865–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Descarries L, Gisiger V, Steriade M. Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol. 1997;53(5):603–25.

    CAS  PubMed  Google Scholar 

  128. Berg DK, Conroy WG. Nicotinic alpha 7 receptors: synaptic options and downstream signaling in neurons. J Neurobiol. 2002;53(4):512–23.

    CAS  PubMed  Google Scholar 

  129. Lin H, et al. Axonal alpha7 nicotinic ACh receptors modulate presynaptic NMDA receptor expression and structural plasticity of glutamatergic presynaptic boutons. Proc Natl Acad Sci U S A. 2010;107(38):16661–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Campbell NR, et al. Endogenous signaling through alpha7-containing nicotinic receptors promotes maturation and integration of adult-born neurons in the hippocampus. J Neurosci. 2010;30(26):8734–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. De Biasi M. Nicotinic mechanisms in the autonomic control of organ systems. J Neurobiol. 2002;53(4):568–79.

    PubMed  Google Scholar 

  132. Stokes C, Papke RL. Use of an alpha3beta4 nicotinic acetylcholine receptor subunit concatamer to characterize ganglionic receptor subtypes with specific subunit composition reveals species-specific pharmacologic properties. Neuropharmacology. 2012;63(4):538–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. David R, et al. Biochemical and functional properties of distinct nicotinic acetylcholine receptors in the superior cervical ganglion of mice with targeted deletions of nAChR subunit genes. Eur J Neurosci. 2010;31(6):978–93.

    PubMed Central  PubMed  Google Scholar 

  134. Cuevas J, Berg DK. Mammalian nicotinic receptors with alpha7 subunits that slowly desensitize and rapidly recover from alpha-bungarotoxin blockade. J Neurosci. 1998;18(24):10335–44.

    CAS  PubMed  Google Scholar 

  135. Cuevas J, Roth AL, Berg DK. Two distinct classes of functional 7-containing nicotinic receptor on rat superior cervical ganglion neurons. J Physiol. 2000;525(Pt 3):735–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Severance EG, et al. The alpha7 nicotinic acetylcholine receptor subunit exists in two isoforms that contribute to functional ligand-gated ion channels. Mol Pharmacol. 2004;66(3): 420–9.

    CAS  PubMed  Google Scholar 

  137. Rassadi S, et al. A null mutation for the alpha3 nicotinic acetylcholine (ACh) receptor gene abolishes fast synaptic activity in sympathetic ganglia and reveals that ACh output from developing preganglionic terminals is regulated in an activity-dependent retrograde manner. J Neurosci. 2005;25(37):8555–66.

    CAS  PubMed  Google Scholar 

  138. Genzen JR, Van Cleve W, McGehee DS. Dorsal root ganglion neurons express multiple nicotinic acetylcholine receptor subtypes. J Neurophysiol. 2001;86(4):1773–82.

    CAS  PubMed  Google Scholar 

  139. Haberberger RV, et al. Nicotinic acetylcholine receptor subtypes in nociceptive dorsal root ganglion neurons of the adult rat. Auton Neurosci. 2004;113(1–2):32–42.

    CAS  PubMed  Google Scholar 

  140. Lips KS, Pfeil U, Kummer W. Coexpression of alpha 9 and alpha 10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons. Neuroscience. 2002;115(1):1–5.

    CAS  PubMed  Google Scholar 

  141. Shelukhina IV, et al. Presence of alpha7 nicotinic acetylcholine receptors on dorsal root ganglion neurons proved using knockout mice and selective alpha-neurotoxins in histochemistry. J Neurochem. 2009;109(4):1087–95.

    CAS  PubMed  Google Scholar 

  142. Abdrakhmanova GR, et al. {Alpha}7-nAChR-mediated suppression of hyperexcitability of colonic dorsal root ganglia neurons in experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G761–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Fucile S, Sucapane A, Eusebi F. Ca2+ permeability of nicotinic acetylcholine receptors from rat dorsal root ganglion neurones. J Physiol. 2005;565(Pt 1):219–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Medhurst SJ, et al. Activation of the alpha7-nicotinic acetylcholine receptor reverses complete Freund adjuvant-induced mechanical hyperalgesia in the rat via a central site of action. J Pain. 2008;9(7):580–7.

    CAS  PubMed  Google Scholar 

  145. Wang Y, et al. Antinociceptive effects of choline against acute and inflammatory pain. Neuroscience. 2005;132(1):49–56.

    CAS  PubMed  Google Scholar 

  146. Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov. 2005;4(8):673–84.

    CAS  PubMed  Google Scholar 

  147. Rosas-Ballina M, Tracey KJ. Cholinergic control of inflammation. J Intern Med. 2009;265(6):663–79.

    CAS  PubMed  Google Scholar 

  148. Huston JM, et al. Splenectomy protects against sepsis lethality and reduces serum HMGB1 levels. J Immunol. 2008;181(5):3535–9.

    CAS  PubMed  Google Scholar 

  149. Bellinger DL, et al. Origin of noradrenergic innervation of the spleen in rats. Brain Behav Immun. 1989;3(4):291–311.

    CAS  PubMed  Google Scholar 

  150. Nance DM, Burns J. Innervation of the spleen in the rat: evidence for absence of afferent innervation. Brain Behav Immun. 1989;3(4):281–90.

    CAS  PubMed  Google Scholar 

  151. Cano G, et al. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol. 2001;439(1):1–18.

    CAS  PubMed  Google Scholar 

  152. Klein RL, et al. Opioid peptides and noradrenaline co-exist in large dense-cored vesicles from sympathetic nerve. Neuroscience. 1982;7(9):2255–61.

    CAS  PubMed  Google Scholar 

  153. Felten DL, et al. Noradrenergic sympathetic innervation of the spleen: I. Nerve fibers associate with lymphocytes and macrophages in specific compartments of the splenic white pulp. J Neurosci Res. 1987;18(1):28–36. 118-21.

    CAS  PubMed  Google Scholar 

  154. Bruchfeld A, et al. Whole blood cytokine attenuation by cholinergic agonists ex vivo and relationship to vagus nerve activity in rheumatoid arthritis. J Intern Med. 2010;268(1): 94–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Kawashima K, et al. Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci. 2007;80(24–25):2206–9.

    CAS  PubMed  Google Scholar 

  156. Morris D. The choline acetyltransferase of human placenta. Biochem J. 1966;98(3):754–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Parnavelas JG, Kelly W, Burnstock G. Ultrastructural localization of choline acetyltransferase in vascular endothelial cells in rat brain. Nature. 1985;316(6030):724–5.

    CAS  PubMed  Google Scholar 

  158. Lan CT, et al. Ultrastructural localization of acetylcholinesterase and choline acetyltransferase in oligodendrocytes, glioblasts and vascular endothelial cells in the external cuneate nucleus of the gerbil. Anat Embryol (Berl). 1996;194(2):177–85.

    CAS  Google Scholar 

  159. Wessler I, et al. Mammalian glial cells in culture synthesize acetylcholine. Naunyn Schmiedebergs Arch Pharmacol. 1997;356(5):694–7.

    CAS  PubMed  Google Scholar 

  160. Kawashima K, et al. Reconciling neuronally and nonneuronally derived acetylcholine in the regulation of immune function. Ann N Y Acad Sci. 2012;1261:7–17.

    CAS  PubMed  Google Scholar 

  161. Zia S, et al. Receptor-mediated inhibition of keratinocyte migration by nicotine involves modulations of calcium influx and intracellular concentration. J Pharmacol Exp Ther. 2000;293(3):973–81.

    CAS  PubMed  Google Scholar 

  162. Nguyen VT, et al. Choline acetyltransferase, acetylcholinesterase, and nicotinic acetylcholine receptors of human gingival and esophageal epithelia. J Dent Res. 2000;79(4):939–49.

    CAS  PubMed  Google Scholar 

  163. Klapproth H, et al. Non-neuronal acetylcholine, a signalling molecule synthesized by surface cells of rat and man. Naunyn Schmiedebergs Arch Pharmacol. 1997;355(4):515–23.

    CAS  PubMed  Google Scholar 

  164. Reinheimer T, et al. Acetylcholine in isolated airways of rat, guinea pig, and human: species differences in role of airway mucosa. Am J Physiol. 1996;270(5 Pt 1):L722–8.

    CAS  PubMed  Google Scholar 

  165. Orr-Urtreger A, et al. Mice deficient in the alpha7 neuronal nicotinic acetylcholine receptor lack alpha-bungarotoxin binding sites and hippocampal fast nicotinic currents. J Neurosci. 1997;17(23):9165–71.

    CAS  PubMed  Google Scholar 

  166. Paylor R, et al. α7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensimotor gating: a behavioral characterization of Acra7-deficient mice. Learn Memory. 1998;5(4–5):302–16.

    CAS  Google Scholar 

  167. Sykora M, et al. Baroreflex: a new therapeutic target in human stroke? Stroke. 2009;40(12):e678–82.

    PubMed  Google Scholar 

  168. Franceschini D, et al. Altered baroreflex in α7 deficient mice. Behav Brain Res. 2000;113:3–10.

    CAS  PubMed  Google Scholar 

  169. Grabus SD, Martin BR, Imad Damaj M. Nicotine physical dependence in the mouse: involvement of the alpha7 nicotinic receptor subtype. Eur J Pharmacol. 2005;515(1–3):90–3.

    CAS  PubMed  Google Scholar 

  170. Salas R, et al. Decreased withdrawal symptoms but normal tolerance to nicotine in mice null for the [alpha]7 nicotinic acetylcholine receptor subunit. Neuropharmacology. 2007;53(7): 863–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Jackson KJ, et al. Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J Pharmacol Exp Ther. 2008;325(1):302–12.

    CAS  PubMed  Google Scholar 

  172. Miner LL, Collins AC. Strain comparison of nicotine-induced seizure sensitivity and nicotinic receptors. Pharmacol Biochem Behav. 1989;33(2):469–75.

    CAS  PubMed  Google Scholar 

  173. Damaj MI, et al. Pharmacological characterization of nicotine-induced seizures in mice. J Pharmacol Exp Ther. 1999;291(3):1284–91.

    CAS  PubMed  Google Scholar 

  174. Miner LL, Marks MJ, Collins AC. Genetic analysis of nicotine-induced seizures and hippocampal nicotinic receptors in the mouse. J Pharmacol Exp Ther. 1986;239(3):853–60.

    CAS  PubMed  Google Scholar 

  175. Miner LL, Marks MJ, Collins AC. Classical genetic analysis of nicotine-induced seizures and nicotinic receptors. J Pharmacol Exp Ther. 1984;231(3):545–54.

    CAS  PubMed  Google Scholar 

  176. Miner LL, Marks MJ, Collins AC. Relationship between nicotine-induced seizures and hippocampal nicotinic receptors. Life Sci. 1985;37(1):75–83.

    CAS  PubMed  Google Scholar 

  177. Franceschini D, et al. Absence of alpha7-containing neuronal nicotinic acetylcholine receptors does not prevent nicotine-induced seizures. Brain Res Mol Brain Res. 2002;98(1–2): 29–40.

    CAS  PubMed  Google Scholar 

  178. Broide RS, et al. Increased sensitivity to nicotine-induced seizures in mice expressing the L250T alpha7 nicotinic acetylcholine receptor mutation. Mol Pharmacol. 2002;61(3): 695–705.

    CAS  PubMed  Google Scholar 

  179. Broide R, Orr-Urtreger A, Patrick JW. Normal apoptosis levels in mice expressing one α7 nicotinic receptor null and one L250T mutant allele. Neuroreport. 2001;12(8):1643–8.

    CAS  PubMed  Google Scholar 

  180. Meizel S, Son JH. Studies of sperm from mutant mice suggesting that two neurotransmitter receptors are important to the zona pellucida-initiated acrosome reaction. Mol Reprod Dev. 2005;72(2):250–8.

    CAS  PubMed  Google Scholar 

  181. Bray C, et al. Mice deficient in CHRNA7, a subunit of the nicotinic acetylcholine receptor, produce sperm with impaired motility. Biol Reprod. 2005;73(4):807–14.

    CAS  PubMed  Google Scholar 

  182. Wang HY, et al. beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem. 2000;275(8): 5626–32.

    CAS  PubMed  Google Scholar 

  183. Wang HY, et al. Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem. 2000;75(3):1155–61.

    CAS  PubMed  Google Scholar 

  184. Liu Q, Kawai H, Berg DK. beta-Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci U S A. 2001;98(8): 4734–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Barrantes FJ, Borroni V, Valles S. Neuronal nicotinic acetylcholine receptor-cholesterol crosstalk in Alzheimer’s disease. FEBS Lett. 2010;584(9):1856–63.

    CAS  PubMed  Google Scholar 

  186. Levin ED, McClernon FJ, Rezvani AH. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl). 2006;184(3–4):523–39.

    CAS  Google Scholar 

  187. Talantova M, et al. Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci U S A. 2013;110(27):E2518–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Leiser SC, et al. A cog in cognition: how the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol Ther. 2009;122(3):302–11.

    CAS  PubMed  Google Scholar 

  189. Hecht SS. Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol. 2002;3(8):461–9.

    CAS  PubMed  Google Scholar 

  190. Schuller HM. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat Rev Cancer. 2009;9(3):195–205.

    CAS  PubMed  Google Scholar 

  191. Kawai H, Berg DK. Nicotinic acetylcholine receptors containing alpha 7 subunits on rat cortical neurons do not undergo long-lasting inactivation even when up-regulated by chronic nicotine exposure. J Neurochem. 2001;78(6):1367–78.

    CAS  PubMed  Google Scholar 

  192. Egleton RD, Brown KC, Dasgupta P. Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases. Pharmacol Ther. 2009;121(2):205–23.

    CAS  PubMed  Google Scholar 

  193. Wei PL, et al. Tobacco-specific carcinogen enhances colon cancer cell migration through alpha7-nicotinic acetylcholine receptor. Ann Surg. 2009;249(6):978–85.

    PubMed  Google Scholar 

  194. Dasgupta P, et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer. 2009;124(1):36–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Soler-Alfonso C, et al. CHRNA7 triplication associated with cognitive impairment and neuropsychiatric phenotypes in a three-generation pedigree. Eur J Hum Genet. 2014;doi:10.1038/ejhg.2013.302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Dani Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paolini, M., De Biasi, M., Dani, J.A. (2014). Nicotinic Acetylcholine Receptors and the Roles of the Alpha7 Subunit. In: Lester, R. (eds) Nicotinic Receptors. The Receptors, vol 26. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1167-7_13

Download citation

Publish with us

Policies and ethics