Skip to main content

Advertisement

Log in

Intercellular localization of occludins and ZO-1 as a solute transport barrier of the mesothelial monolayer

  • ORIGINAL ARTICLE
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

A hyperpermeable state has been observed in patients on long-term peritoneal dialysis. To understand the causes of the structural or functional changes and the progression of the fibrotic process, it is important to determine which region of the peritoneum exhibits these changes. The objectives of this study were to determine the solute permeability associated with cell–cell adhesion of human peritoneal mesothelial cells (HPMCs), to study the relationship between solute permeability and localizations of tight junction-associated proteins (TJPs: occludins and ZO-1), and to assess the effect of exogenous H2O2 supplementation. HPMCs were cultured on a Transwell until the transmesothelial electrical resistance (TER) reached a plateau. Solute permeation tests were conducted using fluorescein isothiocyanate – labeled dextran (molecular weight: 4, 10, 70, and 150 kDa) to calculate the solute permeability coefficient (SPC). Localization of TJPs was observed by a confocal laser scanning microscope after immunofluorescent staining. TER levels increased steadily, beginning at 97.5 ± 0.7 ohms·cm2 and leveling off at 128 ± 3.6 ohms·cm2 (n = 4). This was accompanied by the confluence of cells and the appearance of localized TJPs. SPC levels of the HPMC monolayer on the Transwell were reduced compared to those of the Transwell itself, indicating that the HPMC monolayer provided resistance against solute permeation. Exogenous H2O2 supplementation revealed an increased permeability accompanied with delocalization of TJPs, particularly occludins. The delocalization of occludins and ZO-1 at the intercellular space led to a decrease in intercellular binding capacity and thus triggered an increase in the solute permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AP Wieslander MK Nordin PTT Kjellstrand et al. (1991) ArticleTitleToxicity of peritoneal dialysis fluids on cultured fibroblasts, L-929 Kidney Int 40 77–79 Occurrence Handle1921158 Occurrence Handle1:CAS:528:DyaK3MXlsVaisL8%3D

    PubMed  CAS  Google Scholar 

  2. J Witowski K Korybalska J Wisniewska et al. (2000) ArticleTitleEffect of glucose degradation products on human peritoneal mesothelial cell function J Am Soc Nephrol 11 729–739 Occurrence Handle10752532 Occurrence Handle1:CAS:528:DC%2BD3cXisFertL0%3D

    PubMed  CAS  Google Scholar 

  3. T Miyata K Horie Y Ueda et al. (2000) ArticleTitleAdvanced glycation and lipidoxidation of the peritoneal membrane: reactive roles of serum and peritoneal fluid reactive carbonyl compounds Kidney Int 58 425–435 Occurrence Handle10886591 Occurrence Handle10.1046/j.1523-1755.2000.00182.x Occurrence Handle1:CAS:528:DC%2BD3cXltVyjurw%3D

    Article  PubMed  CAS  Google Scholar 

  4. A Shostak E Pivnik L Gotloib (1996) ArticleTitleCultured rat mesothelial cells generate hydrogen peroxide: a new player in peritoneal defense? J Am Soc Nephrol 7 2371–2378 Occurrence Handle8959627 Occurrence Handle1:CAS:528:DyaK2sXltFylsA%3D%3D

    PubMed  CAS  Google Scholar 

  5. M Nakayama Y Kawaguchi K Yamada et al. (1997) ArticleTitleImmunohistochemical detection of advanced glycation end products (AGEs) in the peritoneum and its possible pathophysiological role in CAPD Kidney Int 51 182–186 Occurrence Handle8995732 Occurrence Handle1:STN:280:DyaK2s7kvV2jtQ%3D%3D

    PubMed  CAS  Google Scholar 

  6. L Gotloib A Shostak V Wajsbrot et al. (1999) ArticleTitleHigh glucose induces a hypertonic, senescent mesothelial cell phenotype after long in vivo exposure Nephron 82 164–173 Occurrence Handle10364709 Occurrence Handle10.1159/000045393 Occurrence Handle1:CAS:528:DyaK1MXktVSrtr0%3D

    Article  PubMed  CAS  Google Scholar 

  7. EA Lee JH Oh HA Lee et al. (2001) ArticleTitleStructural and functional alterations of the peritoneum after prolonged exposure to dialysis solutions: role of aminoguanidine Perit Dial Int 21 245–253 Occurrence Handle11475339 Occurrence Handle1:STN:280:DC%2BD38%2FisFOhug%3D%3D

    PubMed  CAS  Google Scholar 

  8. P Kjellstrand E Martinson A Wieslander et al. (1994) ArticleTitleDevelopment of toxic degradation products during heat sterilization of glucose-containing fluids for peritoneal dialysis: influence of time and temperature Perit Dial Int 15 26–32

    Google Scholar 

  9. T Linden A Cohen R Deppisch et al. (2002) ArticleTitle3,4-Dideoxyglucosone-3-ene (3,4-DGE): a cytotoxic glucose degradation product in fluids for peritoneal dialysis Kidney Int 62 697–703 Occurrence Handle12110035 Occurrence Handle10.1046/j.1523-1755.2002.00490.x Occurrence Handle1:CAS:528:DC%2BD38Xmt1GlsLg%3D

    Article  PubMed  CAS  Google Scholar 

  10. H Vlassara (1994) ArticleTitleSerum advanced glycosylation end products: a new class of uremic toxins? Blood Purif 12 54–59 Occurrence Handle7986476 Occurrence Handle1:CAS:528:DyaK2cXmt1Oqt70%3D Occurrence Handle10.1159/000170145

    Article  PubMed  CAS  Google Scholar 

  11. P Papanastasiou L Grass H Rodela et al. (1994) ArticleTitleImmunological quantification of advanced glycosylation end-products in the serum of patients on hemodialysis or CAPD Kidney Int 46 216–222 Occurrence Handle7933840 Occurrence Handle1:STN:280:DyaK2M%2FhvFCguw%3D%3D

    PubMed  CAS  Google Scholar 

  12. EL Lamb WR Cattell ABSJ Dawnay (1995) ArticleTitleIn vitro formation of advanced glycation end products in peritoneal dialysis fluid Kidney Int 47 1768–1774 Occurrence Handle7643548 Occurrence Handle1:STN:280:DyaK2MzntFarsQ%3D%3D

    PubMed  CAS  Google Scholar 

  13. LW Morgan A Wieslander M Davies et al. (2003) ArticleTitleGlucose degradation products (GDP) related remesothelialisation independently of d-glucose concentration Kidney Int 64 IssueID5 1856–1866 Occurrence Handle10.1046/j.1523-1755.2003.00265.x

    Article  Google Scholar 

  14. RT Krediet MM Pannekeet D Zemel et al. (1996) ArticleTitleMarkers of peritoneal membrane status Perit Dial Int 16 IssueIDSuppl 1 S42–S49 Occurrence Handle8728161

    PubMed  Google Scholar 

  15. KD Nolph F Miller J Rubin et al. (1980) ArticleTitleNew directions in peritoneal dialysis concepts and applications Kidney Int 18 S111–S116

    Google Scholar 

  16. E Stylianou LA Jenner M Davies et al. (1990) ArticleTitleIsolation, culture, and characterization of human peritoneal mesothelial cells Kidney Int 37 1563–1570 Occurrence Handle2362409 Occurrence Handle1:STN:280:DyaK3czgtVOjtA%3D%3D

    PubMed  CAS  Google Scholar 

  17. T Horiuchi K Hayashi JM Beavis et al. (2000) ArticleTitleExpression of transforming growth factor (TGF-β1) mRNA and contractility of extra-cellular matrices in three-dimensional culture of rat peritoneal fibroblasts Clin Exp Nephrol 4 105–113 Occurrence Handle10.1007/PL00012160 Occurrence Handle1:CAS:528:DC%2BD3cXmvVSkt7w%3D

    Article  CAS  Google Scholar 

  18. T Ito N Yorioka M Yamamoto et al. (1999) ArticleTitleEffect of glucose on intercellular junctions of cultured human peritoneal mesothelial cells J Am Soc Nephrol 11 1969–1979

    Google Scholar 

  19. T Mosman (1983) ArticleTitleRapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays J Immunol Methods 65 55–63 Occurrence Handle10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  20. T Horiuchi K Miyamoto S Miyamoto et al. (2003) ArticleTitleImage analysis of remesothelialization following chemical wounding of cultured human peritoneal mesothelial cells: relation to hyaluronan synthesis Kidney Int 64 IssueID6 2280–2290 Occurrence Handle14633153 Occurrence Handle10.1046/j.1523-1755.2003.00325.x Occurrence Handle1:CAS:528:DC%2BD3sXpvFOqtLo%3D

    Article  PubMed  CAS  Google Scholar 

  21. ZW Twardowski KD Nolph R Khanna et al. (1987) ArticleTitlePeritoneal equilibration test Perit Dial Int 7 138–147

    Google Scholar 

  22. B Lindholm A Werynski J Bergstrom (1987) ArticleTitleKinetics of peritoneal dialysis with glycerol and glucose as osmotic agents Trans Am Soc Artif Intern Organs 33 19–27 Occurrence Handle1:CAS:528:DyaL2sXktlOmtLY%3D

    CAS  Google Scholar 

  23. B Rippe G Stelin (1989) ArticleTitleSimulation of peritoneal solute transport during CAPD. Application of two-pore formalism Kidney Int 35 1234–1244 Occurrence Handle2770105 Occurrence Handle1:STN:280:DyaL1MzmtlWhtQ%3D%3D

    PubMed  CAS  Google Scholar 

  24. DK Payne MW Owens M Grisham (1996) ArticleTitleEarly albumin leakage in pulmonary endothelial monolayers exposed to varying levels of hyperoxia Free Rad Res 25 IssueID3 229–238 Occurrence Handle1:CAS:528:DyaK28XmslOktLc%3D

    CAS  Google Scholar 

  25. MJ Menconi AL Salzman N Unno et al. (1997) ArticleTitleAcidosis induces hyperpermeability in Caco-2BBe cultured intestinal epithelial monolayers Am J Physiol 272 G1007–G1021 Occurrence Handle9176208 Occurrence Handle1:CAS:528:DyaK2sXjsFClsbs%3D

    PubMed  CAS  Google Scholar 

  26. A Youakim M Ahdieh (1999) ArticleTitleInterferon-γ decreases barrier function in T84 cells by reducing ZO-1 levels and disruption apical actin Am J Physiol 276 G1279–G1288 Occurrence Handle10330020 Occurrence Handle1:CAS:528:DyaK1MXjsVWmsrc%3D

    PubMed  CAS  Google Scholar 

  27. Lindmark T, Kimura Y, Artursson P. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. 1998;284:362–369

  28. S Hirano RS Rees SL Yancy et al. (2004) ArticleTitleEndothelial barrier dysfunction caused by LPS correlates with phosphorylation of HSP27 in vivo Cell Biol Toxicol 20 1–14 Occurrence Handle15119843 Occurrence Handle10.1023/B:CBTO.0000021019.50889.aa Occurrence Handle1:CAS:528:DC%2BD2cXisVWms70%3D

    Article  PubMed  CAS  Google Scholar 

  29. Y Wang J Zhang X Yi et al. (2004) ArticleTitleActivation of ERK 1/2 MAP kinase pathway induces tight junction disruption in human corneal epithelial cells Exp Eye Res 78 IssueID1 125–136 Occurrence Handle14667834 Occurrence Handle10.1016/j.exer.2003.09.002 Occurrence Handle1:CAS:528:DC%2BD3sXps1eru7w%3D

    Article  PubMed  CAS  Google Scholar 

  30. HS Lee K Namkoong DH Kim et al. (2004) ArticleTitleHydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells Microvasc Res 68 IssueID3 231–238 Occurrence Handle15501242 Occurrence Handle10.1016/j.mvr.2004.07.005 Occurrence Handle1:CAS:528:DC%2BD2cXovVKrsbw%3D

    Article  PubMed  CAS  Google Scholar 

  31. F Weiler T Marbe W Scheppach et al. (2005) ArticleTitleInfluence of protein kinase C on transcription of the tight junction elements ZO-1 and occludin J Cell Physiol 204 IssueID1 83–86 Occurrence Handle15622522 Occurrence Handle10.1002/jcp.20268 Occurrence Handle1:CAS:528:DC%2BD2MXkvF2qsrY%3D

    Article  PubMed  CAS  Google Scholar 

  32. H Tobioka N Sawada Y Zhong et al. (1996) ArticleTitleEnhanced paracellular barrier function of rat mesothelial cells partially protects against cancer cell penetration Br J Cancer 74 IssueID3 439–445 Occurrence Handle8695361 Occurrence Handle1:STN:280:DyaK28zhs1yltw%3D%3D

    PubMed  CAS  Google Scholar 

  33. Y Zhu J Maric M Nilsson et al. (2004) ArticleTitleFormation and barrier function of tight junctions in human ovarian surface epithelium Biol Rep 71 53–59 Occurrence Handle10.1095/biolreprod.103.022913 Occurrence Handle1:CAS:528:DC%2BD2cXltFKktLk%3D

    Article  CAS  Google Scholar 

  34. MP O'Donnell FF Vargas (1986) ArticleTitleElectrical conductivity and its use in estimating an equivalent pore size for arterial endothelium Am J Physiol 19 H16–H21

    Google Scholar 

  35. M Territo JA Berliner AM Fogelman (1984) ArticleTitleEffect of monocyte migration on low-density lipoprotein transport across aortic endothelial cell monolayers J Clin Invest 74 2279–2284 Occurrence Handle6511926 Occurrence Handle1:CAS:528:DyaL2MXmtVKiug%3D%3D

    PubMed  CAS  Google Scholar 

  36. M Navab GP Hough JA Berliner et al. (1986) ArticleTitleRabbit beta-migrating very low density lipoprotein increases endothelial macromolecular transport without altering electrical resistance J Clin Invest 78 389–397 Occurrence Handle3734098 Occurrence Handle1:CAS:528:DyaL28XltFalsr0%3D Occurrence Handle10.1172/JCI112589

    Article  PubMed  CAS  Google Scholar 

  37. HW Sill C Butler TM Hollis et al. (1992) ArticleTitleAlbumin permeability and electrical resistance as means of assessing endothelial monolayer integrity in vitro J Tiss Cell Meth 14 253–258 Occurrence Handle10.1007/BF01409018

    Article  Google Scholar 

  38. H Jo RO Dull TM Hollis et al. (1991) ArticleTitleEndothelial albumin permeability is shear-dependent, time-dependent and reversible Am J Physiol 260 H1991–H1996

    Google Scholar 

  39. SM Albelda OM Sampson FR Haselton et al. (1988) ArticleTitlePermeability characteristics of cultured endothelial cell monolayers J Appl Physiol 64 308–322 Occurrence Handle2451657 Occurrence Handle1:STN:280:DyaL1c7os1Klug%3D%3D

    PubMed  CAS  Google Scholar 

  40. M Furuse M Hirase A Itoh et al. (1993) ArticleTitleOccludin: a novel integral membrane protein localizing at tight junctions J Cell Biol 123 1777–1788 Occurrence Handle8276896 Occurrence Handle10.1083/jcb.123.6.1777 Occurrence Handle1:CAS:528:DyaK2cXisFynsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  41. S Tsukita M Furuse (2000) ArticleTitlePores in the wall: claudins constitute tight junction strands containing aqueous pores J Cell Biol 149 IssueID1 13–16 Occurrence Handle10747082 Occurrence Handle10.1083/jcb.149.1.13 Occurrence Handle1:CAS:528:DC%2BD3cXitlWrtrY%3D

    Article  PubMed  CAS  Google Scholar 

  42. GJ Feldman JM Mullin MP Ryan (2005) ArticleTitleOccludin: structure, function and regulation Adv Drug Del Rev 57 IssueID6 883–917 Occurrence Handle10.1016/j.addr.2005.01.009 Occurrence Handle1:CAS:528:DC%2BD2MXivFKhsLY%3D

    Article  CAS  Google Scholar 

  43. HB Lee MR Yu JS Song et al. (2004) ArticleTitleReactive oxygen species amplify protein kinase C in high glucose-induced fibronectin expression by human peritoneal mesothelial cells Kidney Int 65 1170–1179 Occurrence Handle15086456 Occurrence Handle10.1111/j.1523-1755.2004.00491.x Occurrence Handle1:CAS:528:DC%2BD2cXjtFyqtL8%3D

    Article  PubMed  CAS  Google Scholar 

  44. CG Kevil T Oshima B Alexander et al. (2000) ArticleTitleH2O2-mediated permeability: role of MAPK and occludin Am J Physiol Cell Physiol 279 IssueID1 C21–30 Occurrence Handle10898713 Occurrence Handle1:CAS:528:DC%2BD3cXltlyqtLc%3D

    PubMed  CAS  Google Scholar 

  45. CG Kevil N Okayama JS Alexander (2001) ArticleTitleH2O2-mediaated permeability II: importance of tyrosine phosphatase and kinase Am J Physiol Cell Physiol 281 IssueID6 C1940–1947 Occurrence Handle11698252 Occurrence Handle1:CAS:528:DC%2BD3MXptlKms7Y%3D

    PubMed  CAS  Google Scholar 

  46. MM Zweers DR de Waart W Smit et al. (1999) ArticleTitleGrowth factors VEGF and TGF-β1 in peritoneal dialysis J Lab Clin Med 134 124–132 Occurrence Handle10444025 Occurrence Handle10.1016/S0022-2143(99)90116-6 Occurrence Handle1:CAS:528:DyaK1MXlsFegtLs%3D

    Article  PubMed  CAS  Google Scholar 

  47. DA Antonetti AJ Barber S Khin et al. (1998) ArticleTitleVascular permeability in experimental diabetes is associated with reduced endothelial occludin content vascular endothelial growth factor decreases occludin in retinal endothelial cells Diabetes 47 1953–1959 Occurrence Handle9836530 Occurrence Handle1:CAS:528:DyaK1cXnvVCru7Y%3D

    PubMed  CAS  Google Scholar 

  48. JM Chehade MJ Haas AD Mooradian (2000) ArticleTitleDiabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression Neurochem Res 27 249–252 Occurrence Handle10.1023/A:1014892706696

    Article  Google Scholar 

  49. NS Harhaj DA Antonetti (2004) ArticleTitleRegulation of tight junctions and loss of barrier function in pathophysiology Int J Biochem Biol 36 1206–1237 Occurrence Handle10.1016/j.biocel.2003.08.007 Occurrence Handle1:CAS:528:DC%2BD2cXjsVWnsb8%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Horiuchi DEng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneda, Ki., Miyamoto, K., Nomura, S. et al. Intercellular localization of occludins and ZO-1 as a solute transport barrier of the mesothelial monolayer. J Artif Organs 9, 241–250 (2006). https://doi.org/10.1007/s10047-006-0350-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-006-0350-3

Key words

Navigation