Skip to main content

Physiology of Peritoneal Dialysis

  • Chapter
  • First Online:
Applied Peritoneal Dialysis
  • 1117 Accesses

Abstract

The peritoneal cavity is lined by a monolayer of mesothelial cells. Several models have been proposed to explain the physiology of peritoneal transport: the three-pore model, the pore-matrix model, and the distributive model. During peritoneal dialysis, solutes move bidirectionally between the peritoneal capillary blood and the peritoneal cavity, mainly by diffusion, and to a less extent by convection. Ultrafiltration is achieved either by creation of an osmotic gradient across the peritoneal membrane or by inducing water flow with a colloid agent. During peritoneal dialysis, fluid is lost from the peritoneal cavity via lymphatic vessels and by absorption into the surrounding tissues. The net ultrafiltration represents the difference between transcapillary ultrafiltration of fluid into the peritoneal cavity and the lymphatic reabsorption of fluid from the peritoneal cavity. The peritoneal equilibration test is used in clinical practice to evaluate the peritoneal solute transfer rate of individual patients and patients are divided into high, high average, low average, or low transporter groups. Morphological changes occur in the peritoneal membrane in patients over time in long-term peritoneal dialysis. Prolonged exposure to glucose and glucose degradation products leads to production of proinflammatory and angiogenic factors. This leads to increased small solute transport across the peritoneal membrane, resulting in rapid loss of osmotic gradient and a decline in net ultrafiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blake PG, Daugirdas JT. Physiology of peritoneal dialysis. In: Daugirdas JT, Blake PG, Ing TS, editors. Handbook of dialysis. 5th. ed. Philadelphia: Lippincott Williams & Wilkins; 2015. p. 392–407.

    Google Scholar 

  2. Heimbürger O. 29 – Peritoneal physiology. In: Himmelfarb J, Ikizler TA, editors. Chronic kidney disease, dialysis, and transplantation. 4th ed. Philadelphia: Elsevier; 2019. p. 450–69.e6.

    Google Scholar 

  3. Nagy JA. Peritoneal membrane morphology and function. Kidney Int Suppl. 1996;56:S2–11.

    CAS  PubMed  Google Scholar 

  4. Flessner MF. The role of extracellular matrix in transperitoneal transport of water and solutes. Perit Dial Int. 2001;21(Suppl 3):S24–9.

    PubMed  Google Scholar 

  5. Nolph KD, Miller F, Rubin J, Popovich R. New directions in peritoneal dialysis concepts and applications. Kidney Int Suppl. 1980;10:S111–6.

    CAS  PubMed  Google Scholar 

  6. Rippe B, Stelin G. How does peritoneal dialysis remove small and large molecular weight solutes? Transport pathways: fact and myth. Adv Perit Dial. 1990;6:13–8.

    CAS  PubMed  Google Scholar 

  7. Ni J, Verbavatz JM, Rippe A, Boisde I, Moulin P, Rippe B, et al. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int. 2006;69(9):1518–25.

    CAS  PubMed  Google Scholar 

  8. Rippe B. A three-pore model of peritoneal transport. Perit Dial Int. 1993;13(Suppl 2):S35–8.

    PubMed  Google Scholar 

  9. Flessner MF. Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol. 1991;2(2):122–35.

    CAS  PubMed  Google Scholar 

  10. Flessner MF. Peritoneal ultrafiltration: physiology and failure. Contrib Nephrol. 2009;163:7–14.

    CAS  PubMed  Google Scholar 

  11. Flessner MF, Dedrick RL. Schultz JS. A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Phys. 1984;246(4 Pt 2):R597–607.

    CAS  Google Scholar 

  12. Flessner MF. Distributed model of peritoneal transport: implications of the endothelial glycocalyx. Nephrol Dial Transplant. 2008;23(7):2142–6.

    CAS  PubMed  Google Scholar 

  13. Keshaviah P, Emerson PF, Vonesh EF, Brandes JC. Relationship between body size, fill volume, and mass transfer area coefficient in peritoneal dialysis. J Am Soc Nephrol. 1994;4(10):1820–6.

    CAS  PubMed  Google Scholar 

  14. Hirszel P, Lasrich M, Maher JF. Augmentation of peritoneal mass transport by dopamine: comparison with norepinephrine and evaluation of pharmacologic mechanisms. J Lab Clin Med. 1979;94(5):747–54.

    CAS  PubMed  Google Scholar 

  15. Hirszel P, Maher JF, Chamberlin M. Augmented peritoneal mass transport with intraperitoneal nitroprusside. J Dial. 1978;2(2):131–42.

    CAS  PubMed  Google Scholar 

  16. Krediet RT, Zuyderhoudt FM, Boeschoten EW, Arisz L. Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Investig. 1987;17(1):43–52.

    CAS  Google Scholar 

  17. van Esch S, van Diepen AT, Struijk DG, Krediet RT. The mutual relationship between peritonitis and peritoneal transport. Perit Dial Int. 2016;36(1):33–42.

    PubMed  PubMed Central  Google Scholar 

  18. Krediet RT, Van Esch S, Smit W, Michels WM, Zweers MM, Ho-Dac-Pannekeet MM, et al. Peritoneal membrane failure in peritoneal dialysis patients. Blood Purif. 2002;20(5):489–93.

    PubMed  Google Scholar 

  19. Leypoldt JK. Solute transport across the peritoneal membrane. J Am Soc Nephrol. 2002;13(suppl 1):S84.

    CAS  PubMed  Google Scholar 

  20. Heimburger O, Waniewski J, Werynski A, Lindholm B. A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int. 1992;41(5):1320–32.

    CAS  PubMed  Google Scholar 

  21. Staverman A. The theory of measurement of osmotic pressure. Recueil des Travaux Chimiques des Pays-Bas. 1951;70(4):344–52.

    CAS  Google Scholar 

  22. Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Fluid and solute transport in CAPD patients using ultralow sodium dialysate. Kidney Int. 1994;46(2):333–40.

    CAS  PubMed  Google Scholar 

  23. Morelle J, Sow A, Fustin CA, Fillee C, Garcia-Lopez E, Lindholm B, et al. Mechanisms of crystalloid versus colloid osmosis across the peritoneal membrane. J Am Soc Nephrol. 2018;29(7):1875–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang T, Cheng HH, Heimburger O, Waniewski J, Bergstrom J, Lindholm B. Hyaluronan prevents the decreased net ultrafiltration caused by increased peritoneal dialysate fill volume. Kidney Int. 1998;53(2):496–502.

    CAS  PubMed  Google Scholar 

  25. Twardowski ZJ, Prowant BF, Nolph KD, Martinez AJ, Lampton LM. High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int. 1983;23(1):64–70.

    CAS  PubMed  Google Scholar 

  26. Gomes AM, Fontán MP, Rodríguez-Carmona A, Sastre A, Cambre HD, Muñiz AL, Falcón TG. Categorization of sodium sieving by 2.27% and 3.86% peritoneal equilibration tests—a comparative analysis in the clinical setting. Nephrol Dial Transplant. 2009;24(11):3513–20. https://doi.org/10.1093/ndt/gfp319. Epub 2009 Jul 1

    Article  CAS  PubMed  Google Scholar 

  27. Flessner MF. Net ultrafiltration in peritoneal dialysis: role of direct fluid absorption into peritoneal tissue. Blood Purif. 1992;10(3–4):136–47.

    CAS  PubMed  Google Scholar 

  28. Mactier RA, Khanna R, Twardowski ZJ, Nolph KD. Role of peritoneal cavity lymphatic absorption in peritoneal dialysis. Kidney Int. 1987;32(2):165–72.

    CAS  PubMed  Google Scholar 

  29. Abu-Hijleh MF, Habbal OA, Moqattash ST. The role of the diaphragm in lymphatic absorption from the peritoneal cavity. J Anat. 1995;186(Pt 3):453–67.

    PubMed  PubMed Central  Google Scholar 

  30. Flessner MF, Parker RJ, Sieber SM. Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Phys. 1983;244(1):H89–96.

    CAS  Google Scholar 

  31. Heimburger O, Waniewski J, Werynski A, Park MS, Lindholm B. Lymphatic absorption in CAPD patients with loss of ultrafiltration capacity. Blood Purif. 1995;13(6):327–39.

    CAS  PubMed  Google Scholar 

  32. Daugirdas JT, Ing TS, Gandhi VC, Hano JE, Chen WT, Yuan L. Kinetics of peritoneal fluid absorption in patients with chronic renal failure. J Lab Clin Med. 1980;95(3):351–61.

    CAS  PubMed  Google Scholar 

  33. Twardowski ZJ, Nolph KO, Khanna R, Prowant BF, Ryan LP, Moore HL, et al. Peritoneal equilibration test. Perit Dial Int. 1987;7(3):138–48.

    Google Scholar 

  34. Ho-dac-Pannekeet MM, Atasever B, Struijk DG, Krediet RT. Analysis of ultrafiltration failure in peritoneal dialysis patients by means of standard peritoneal permeability analysis. Perit Dial Int. 1997;17(2):144–50.

    CAS  PubMed  Google Scholar 

  35. Rippe B. How to measure ultrafiltration failure: 2.27% or 3.86% glucose? Perit Dial Int. 1997;17(2):125–8.

    CAS  PubMed  Google Scholar 

  36. Pride ET, Gustafson J, Graham A, Spainhour L, Mauck V, Brown P, et al. Comparison of a 2.5% and a 4.25% dextrose peritoneal equilibration test. Perit Dial Int. 2002;22(3):365–70.

    CAS  PubMed  Google Scholar 

  37. Mujais S, Nolph K, Gokal R, Blake P, Burkart J, Coles G, et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Perit Dial Int. 2000;20(Suppl 4):S5–21.

    PubMed  Google Scholar 

  38. La Milia V, Di Filippo S, Crepaldi M, Del Vecchio L, Dell'Oro C, Andrulli S, et al. Mini-peritoneal equilibration test: a simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int. 2005;68(2):840–6.

    PubMed  Google Scholar 

  39. Teitelbaum I. Ultrafiltration failure in peritoneal dialysis: a pathophysiologic approach. Blood Purif. 2015;39(1–3):70–3.

    CAS  PubMed  Google Scholar 

  40. Combet S, Miyata T, Moulin P, Pouthier D, Goffin E, Devuyst O. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol. 2000;11(4):717–28.

    CAS  PubMed  Google Scholar 

  41. Davies SJ, Bryan J, Phillips L, Russell GI. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant. 1996;11(3):498–506.

    CAS  PubMed  Google Scholar 

  42. Heimburger O, Wang T, Lindholm B. Alterations in water and solute transport with time on peritoneal dialysis. Perit Dial Int. 1999;19(Suppl 2):S83–90.

    PubMed  Google Scholar 

  43. Heimburger O, Waniewski J, Werynski A, Tranaeus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int. 1990;38(3):495–506.

    CAS  PubMed  Google Scholar 

  44. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003;348(5):403–13.

    PubMed  Google Scholar 

  45. Aroeira LS, Aguilera A, Sanchez-Tomero JA, Bajo MA, del Peso G, Jimenez-Heffernan JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol. 2007;18(7):2004–13.

    CAS  PubMed  Google Scholar 

  46. Taranu T, Florea L, Paduraru D, Georgescu SO, Francu LL, Stan CI. Morphological changes of the peritoneal membrane in patients with long-term dialysis. Rom J Morphol Embryol.  ;55(3):927–32.

    PubMed  Google Scholar 

  47. Twardowski ZJ, Nolph KD, Khanna R, Prowant BF, Ryan LP, Moore HL, Nielsen MP. Peritoneal equilibration test. Perit Dial Int. 1987;7:3138–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Teitelbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, C.H., Teitelbaum, I. (2021). Physiology of Peritoneal Dialysis. In: Rastogi, A., Lerma, E.V., Bargman, J.M. (eds) Applied Peritoneal Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-030-70897-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70897-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70896-2

  • Online ISBN: 978-3-030-70897-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics