Skip to main content

Advertisement

Log in

Analysis of the length scale characterized by the yield stress fluids porosimetry method for consolidated media: comparison with pore network models and mercury intrusion porosimetry

Analyse de l’échelle de longueur caractérisée par la méthode de porosimétrie par injection de fluides à seuil dans les milieux poreux consolidés: comparaison avec les modèles de réseau de pores et la porosimétrie par injection de mercure

Análisis de la dimensión caracterizada en los medios porosos consolidados por el método de porosimetría de inyección de fluidos con tensión de fluencia : comparación con los modelos de redes de poros y con la porosimetría de intrusión de mercurio

屈服应力流体孔隙度测定法表征的固结介质长度尺度分析:孔隙网格模型法与压汞仪法的比较

Análise da escala de comprimento caracterizada pelo método de porosimetria de fluidos não newtonianos para meios consolidados: comparação com modelos de rede de poros e porosimetria de intrusão de mercúrio

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Substantial progress has been recently achieved in the development of a clean alternative to mercury intrusion porosimetry (MIP) based on single-phase flow measurements in porous samples using yield stress fluids. However, no study to date has examined the scale of the pore length actually provided by the yield stress fluids porosimetry method (YSM) in consolidated porous media. Indeed, while the results of YSM were compared to those provided by MIP in the past, the relationships between the characterized pore size distribution (PSD) and the actual pore geometry have still not been addressed for this type of porous media. This issue is of special interest to geoscientists involved in seeking relevant information from core characterization operations. With this aim in mind, the objective of the present paper is to evaluate the agreement between the PSDs characterized by YSM, the pore-opening size distributions provided by MIP tests, and the pore-throat and pore-body size distributions obtained from X-ray computed microtomography. For this purpose, a set of artificial and natural porous samples with permeability values extending over two magnitudes were characterized by using both YSM and MIP laboratory tests. Then, the results were matched to the model pore geometries extracted from digital images of the real microstructure. This analysis led to the main conclusion that YSM can be reliably used as an adequate substitute for MIP in the case of the investigated consolidated media, given the general agreement observed between these methods.

Résumé

Des progrès substantiels ont récemment été accomplis dans le développement d’une alternative propre à la porosimétrie par injection de mercure (PIM) sur la base de mesures de l’écoulement monophasique des échantillons poreux à l’aide de fluides à seuil. Cependant, aucune étude n’a à ce jour examiné l’échelle de longueur des pores réellement fournie par la méthode de porosimétrie par injection de fluides à seuil  (MFS) dans les milieux poreux consolidés. En effet, si les résultats de MFS ont été comparés à ceux fournis par PIM dans le passé, les relations entre la distribution de la taille des pores (DTP) et la géométrie réelle des pores n’ont toujours pas été abordées pour ce type de milieu poreux. Cette problématique est d’un intérêt particulier pour les géoscientifiques impliqués dans la recherche d’informations pertinentes à partir des opérations de caractérisation des carottes. Dans cette optique, l’objectif du présent article est d’évaluer l’adéquation entre les DTP caractérisées par la MFS, les distributions de taille d’ouverture des pores fournies par les tests de PIM, et les distributions de taille des étranglements d’interstices et des corps d’interstices obtenues à partir de la microtomographie à rayons X. A cet effet, un ensemble d’échantillons poreux artificiels et naturels, dont les valeurs de perméabilité couvrent deux ordres de grandeur, ont été caractérisés en utilisant les tests de laboratoire MFS et PIM à la fois. Ensuite, les résultats sont comparés aux géométries du modèle de pores extraites des images numériques de la microstructure réelle. A partir de cette analyse, on peut en conclure que la MFS peut être utilisée de manière fiable en tant que substitut satisfaisant de la PIM dans le cas des milieux consolidés étudiés, étant donné l’adéquation générale observée entre ces méthodes.

Resumen

Recientemente se ha logrado un progreso sustancial en el desarrollo de una nueva alternativa a la porosimetría de intrusión de mercurio (MIP) basada en mediciones de flujo monofásico en muestras porosas utilizando fluidos con tensión de fluencia. Sin embargo, hasta la fecha ningún estudio ha examinado la dimensión de los poros que realmente proporciona el método de porosimetría de fluidos con tensión de fluencia (YSM) en los medios porosos consolidados. De hecho, aunque los resultados de YSM se compararon con los proporcionados por MIP en el pasado, las relaciones entre la distribución del tamaño de los poros (PSD) y la geometría real de los poros aún no se han abordado para este tipo de medios porosos. Esta cuestión es de especial interés para los geocientíficos implicados en la búsqueda de información relevante a partir de las operaciones de caracterización de testigos. Con este fin, el objetivo del presente trabajo es evaluar la concordancia entre las PSDs caracterizadas por YSM, las distribuciones de tamaño de apertura de poros proporcionadas por los ensayos MIP, y las distribuciones de tamaño de poros y cuerpos de poros obtenidas a partir de la microtomografía computarizada de rayos X. Para ello, se caracterizó un conjunto de muestras porosas artificiales y naturales con valores de permeabilidad de más de dos magnitudes utilizando tanto los ensayos de laboratorio YSM como MIP. A continuación, los resultados se cotejaron con las geometrías de poros modelo extraídas de las imágenes digitales de la microestructura real. Este análisis llevó a la conclusión principal de que el YSM puede utilizarse de forma fiable como sustituto adecuado del MIP en el caso de los medios consolidados investigados, dada la concordancia general observada entre estos métodos.

摘要

基于采用屈服应力流体开展的多孔样品单向流测量,寻找压汞仪法(MIP)的清洁代替近期已取得实质性进展。然而,目前还没有研究对屈服应力流体孔隙度测定法(YSM)获得的固结多孔介质孔隙长度进行验证。尽管YSM的结果曾与MIP提供的结果相比较,该方法描述的此类多孔介质孔径分布(PSD)与实际的空隙几何形状之间的关系仍未解决。因涉及从核心特征操作中获取相关信息,地学科学家对此问题十分感兴趣。考虑到这一目标,本文的目的是评价YSM描述的PSDs、MIP试验提供的孔隙开口大小分布以及X射线显微计算机断层成像获取的孔喉和孔隙体大小分布之间的一致性。为此,我们采用YSM和MIP室内试验对渗透率跨越两个数量级的人工和天然多孔样品进行表征。接着,将获得的结果与从实际微观结构数字图像中提取的孔隙几何形状进行匹配。该分析的主要结论为:考虑到两种方法获得的结果整体一致,YSM适合作为MIP的替代并被可靠地应用于所研究的固结介质。

Resumo

Recentemente houve um progresso substancial no desenvolvimento de alternativas limpas para porosimetria de intrusão de mercúrio (PIM) baseada em medidas de fluxo de fase única em amostras porosas usando fluido não newtoniano. Entretanto, nenhum estudo até o momento examinou a escala de poro dada pelo método de porosimetria de fluido não newtoniano (PFNN) em meio poroso consolidado. De fato, enquanto no passado os resultados de PFNN foram comparados àqueles fornecidos por PIM, as relações entre a distribuição de tamanhos de poros (DTM) caracterizada e a real geometria dos poros ainda não havia sido tratada para este tipo de meio poroso. Esta questão é de especial interesse de geocientistas envolvidos em buscar informações relevantes em atividades de caracterização de testemunhos. Com esta intenção em mente, o objetivo deste artigo é avaliar a concordância entre as DTMs caracterizadas pela PFNN, as distribuições de tamanho de abertura de poro fornecidas por testes de PIM, e as distribuições de tamanho de garganta e corpo de poro obtidas a partir de microtomografia computadorizada de raios X. Para isso, um conjunto de amostras artificiais e naturais de meios porosos, com valores de permeabilidade estendendo-se por duas ordens de magnitude, foram caracterizados através de testes de laboratório de PFNN e PIM. Em seguida, os resultados foram comparados às geometrias dos poros obtidas através de imagens digitais das microestruturas reais. Essa análise levou à principal conclusão de que a PFNN pode ser usada de forma confiável como uma substituta adequada para a PIM no caso dos meios consolidados investigados, dada a concordância geral observada entre esses métodos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abou Najm MR, Atallah NM (2016) Non-Newtonian fluids in action: revisiting hydraulic conductivity and pore size distribution of porous media. Vadose Zone J 15(9):1539–1663

    Article  Google Scholar 

  • Aizebeokhai AP, Oyeyemi KD (2018) Geoelectrical characterisation of basement aquifers: the case of Iberekodo, southwestern Nigeria. Hydrogeol J 26:651–664

    Article  Google Scholar 

  • Alyafei N, Qaseminejad Raeini A, Paluszny A, Blunt MJ (2015) A sensitivity study of the effect of image resolution on predicted Petrophysical properties. Transp Porous Media 110:157–169

    Article  Google Scholar 

  • Alfi M, Barrufet M, Killough J (2019) Effect of pore sizes on composition distribution and enhance recovery from liquid shale: molecular sieving in low permeability reservoirs. Fuel 235:1555–1564

    Article  Google Scholar 

  • Ambari A, Benhamou M, Roux S, Guyon E (1990) Distribution des tailles des pores d’un milieu poreux déterminée par l'écoulement d’un fluide à seuil [Distribution of the pore sizes of a porous medium determined by the flow of a threshold fluid]. C R Acad Sci Paris 311 (II): 1291–1295

  • Amirtharaj ES, Ioannidis MA, Parker B, Tsakiroglou CD (2011) Statistical synthesis of imaging and porosimetry data for the characterization of microstructure. Transp Porous Media 86(1):135–154

  • Atallah NM, Abou Najm MR (2019) Characterization of synthetic porous media using non-Newtonian fluids: experimental device. Eur J Soil Sci 70:257–267

    Article  Google Scholar 

  • Ball WP, Buehler C, Harmon TC, Mackay DM, Roberts PV (1990) Characterization of a sandy aquifer material at the grain scale. J Contam Hydrol 5:253–295

    Article  Google Scholar 

  • Bloomfiel JP, GooddyD C, Bright MI, Williams PJ (2001) Pore-throat size distributions in Permo-Triassic sandstones from the United Kingdom and some implications for contaminant hydrogeology. Hydrogeol J 9:219–230

    Article  Google Scholar 

  • Blunt MJ, Bijeljic B, Dong H, Gharbi O, Iglauer S, Mostaghimi P, Pentland C (2003) Pore-scale imaging and modelling. Adv Water Resour 51:197–216

    Article  Google Scholar 

  • Bradford SA, Kim HN, Haznedaroglu BZ, Torkzaban S, Walker SL (2009) Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. Environ Sci Technol 43:6996–7002

    Article  Google Scholar 

  • Bultreys T, De Boever W, Cnudde V (2016) Imaging and image-based fluid trans- port modeling at the pore scale in geological materials: a practical introduction to the current state-of-the-art. Earth Sci Rev 155:93–128

    Article  Google Scholar 

  • Burlion N, Bernard D, Chen D (2006) X-ray microtomography, application to microstructure analysis of a cementitious material during leaching process. Cem Concr Res 36:346–357

    Article  Google Scholar 

  • Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology: engineering applications. Butterworth-Heinemann, Boston; Elsevier, Amsterdam

  • Chaplain V, Mills P, Guiffant G, Cerasi P (1992) Model for the flow of a yield fluid through a porous medium. J Phys II France 2:2145–2158

    Google Scholar 

  • Chauhan S, Sell K, Rühaak W, Wille T, Sass I (2020) CobWeb 1.0: machine learning toolbox for tomographic imaging. Geosci Model Dev 13:315–334

    Article  Google Scholar 

  • Chauveteau G, Nabzar L, El Attar L, Jacquin C (1996) Pore structure and hydrodynamics in sandstones. SCA conference paper number 9607, Society of Core Analysts, Los Angeles, CA, 1996

  • Chen G, Lu S, Zhang J, Pervukhina M, Liu K, Wang M, Han T, Tian S, Li J, Zhang Y, Ch X (2018) A method for determining oil-bearing pore size distribution in shales: a case study from the Damintun Sag, China. J Petrol Sci Eng 166:673–678

    Article  Google Scholar 

  • Churcher PL, French PR, Shaw JC, Schramm LL (1991) Rock properties of Berea sandstone, baker dolomite, and Indiana limestone. Proceedings of SPE International Symposium on Oilfield Chemistry, Anaheim, CA, February 1991

  • Cieszko M, Kempinski M, Czerwinski T (2019) Limit models of pore space structure of porous materials for determination of limit pore size distributions based on mercury intrusion data. Transp Porous Media 127:433–458

    Article  Google Scholar 

  • Diamond S (2000) Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem Concr Res 30:1517–1525

    Article  Google Scholar 

  • Eilertsen T, Børresen KA, Bertin H, Graue A (1997) Experiments and numerical simulations of fluid flow in a cross layered reservoir model. J Pet Sci Eng 18:49–60

    Article  Google Scholar 

  • Feng X, Zeng J, Zhan H, Hu Q, Ma Z, Feng S (2020) Resolution effect on image-based conventional and tight sandstone pore space reconstructions: origins and strategies. J Hydrol 586:124856

    Article  Google Scholar 

  • Fleury M (2018) Measurement of interfacial area from NMR time dependent diffusion and relaxation measurements. J Colloid Interface Sci 509:495–501

    Article  Google Scholar 

  • Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Charact 23:1–11

    Article  Google Scholar 

  • Gostick JT (2017) Versatile and efficient pore network extraction method using marker-based watershed segmentation. Phys Rev E 96:023307

    Article  Google Scholar 

  • Gostick JT, Khan ZA, Tranter TG, Kok MD, Agnaou M, Sadeghi M, Jervis R (2019) PoreSpy: a Python toolkit for quantitative analysis of porous media images. J Open Source Software 4:1296

    Article  Google Scholar 

  • Hamon G, Vidal J (1986) Scaling-up the capillary imbibition process from laboratory experiments on homogeneous and heterogeneous samples. SPE 15852, Proc SPE European Pet Conf, London, 20–22 October 1986

  • Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13(1):98–111

    Article  Google Scholar 

  • Harvey RW, Garabedian SP (1991) Use of colloid filtration modeling movement of bacteria through a contaminated sandy aquifer. Environ Sci Technol 25:178–185

    Article  Google Scholar 

  • Houston AN, Otten W, Falconer R, Monga O, Baveye PC, Hapca SM (2017) Quantification of the pore size distribution of soils: assessment of existing software using tomographic and synthetic 3D images. Geoderma 299:73–82

    Article  Google Scholar 

  • Jiao L, Andersen PØ, Zhou J, Cai J (2020) Applications of mercury intrusion capillary pressure for pore structures: a review. Capillarity 3:62–74

    Article  Google Scholar 

  • Kareem R, Cubillas P, Gluyas J, Bowen L, Hillier S, Christopher GH (2017) Multi-technique approach to the Petrophysical characterization of Berea sandstone core plugs (Cleveland quarries, USA). J Pet Sci Eng 149:436–455

    Article  Google Scholar 

  • Karpyn ZT, Grader AS, Halleck PM (2007) Visualization of fluid occupancy in a rough fracture using micro-tomography. J Colloid Interface Sci 307:181–187

    Article  Google Scholar 

  • Kueper BH, Abbott W, Farquhar G (1989) Experimental observations of multiphase flow in heterogeneous porous media. J Contam Hydrol 5:83–95

    Article  Google Scholar 

  • Leu L, Berg S, Enzmann F, Armstrong RT, Kersten M (2014) Fast X-ray Micro-tomography of multiphase flow in Berea sandstone: a sensitivity study on image processing. Transp Porous Media 105:451–469

  • Li X, Kang Y, Haghighi M (2018b) Investigation of pore size distributions of coals with different structures by nuclear magnetic resonance (NMR) and mercury intrusion porosimetry (MIP). Measurements 116:122–128

    Google Scholar 

  • Li H, Li H, Wang K, Liu C (2018a) Effect of rock composition microstructure and pore characteristics on its rock mechanics properties. Int J Min Sci Technol 28(2):303–308

    Article  Google Scholar 

  • Li Z, Liu D, Cai Y, Ranjith PG, Yao Y (2017) Multi-scale quantitative characterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray μ-CT. Fuel 209:43–53

    Article  Google Scholar 

  • Lindquist WB, Venkatarangan A (2000) Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J Geophys Res Solid Earth 105(B9):21509–21527

    Article  Google Scholar 

  • Liu K, Ostadhassan M (2019) The impact of pore size distribution data presentation format on pore structure interpretation of shales. Adv Geo-Energy Res 3:187–197

    Article  Google Scholar 

  • Ma S, Morrow NR (1994) Effect of firing on petrophysical properties of Berea sandstone. SPE-21045-PA, Society of Petroleum Engineers, Richardson, TX

  • Mackaya TE, Ahmadi A, Omari A, Rodríguez de Castro A (2021) Empirical flow rate/pressure drop relationships for non-circular capillaries used in yield stress fluid porosimetry. Transp Porous Media 136:587–605

    Article  Google Scholar 

  • Malvault G (2013) Détermination expérimentale de la distribution de taille de pores d’un milieu poreux par l’injection d’un fluide à seuil ou par analyse fréquentielle [Experimental determination of the pore size distribution of a porous medium by the injection of a threshold fluid or by frequency analysis]. PhD Thesis, Arts et Métiers ParisTech, Paris

  • Malvault G, Ahmadi A, Omari A (2017) Numerical simulation of yield stress fluid flow in capillary bundles: influence of the form and the axial variation in the cross section. Transp Porous Media 120:255–270

    Article  Google Scholar 

  • Miller JA (1999) Ground water atlas of the United States: introduction and national summary. US Geol Surv Hydrol Atlas 730-A

  • Mirabolghasemi M, Prodanović M, DiCarlo D, Ji H (2015) Prediction of empirical properties using direct pore-scale simulation of straining through 3D microtomography images of porous media. J Hydrol 529:768–778

    Article  Google Scholar 

  • Morris BL, Lawrence ARL, Chilton PJC, Adams B, Calow RC, Klinck BA (2003) Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management. United Nations Environment Programme, New York

    Google Scholar 

  • Nabawy BS, Géraud Y, Rochette P, Bur N (2009) Pore-throat characterization in highly porous and permeable sandstones. AAPG Bull 93(6):719–739

    Article  Google Scholar 

  • Oukhlef A (2011) Détermination de la distribution de tailles de pores d’un milieu poreux [Determination of the pore size distribution of a porous medium]. PhD Thesis, Arts et Métiers ParisTech, Paris

  • Oukhlef A, Champmartin S, Ambari A (2014) Yield stress fluids method to determine the pore size distribution of a porous medium. J Non-Newtonian Fluid Mech 204:87–93

    Article  Google Scholar 

  • Øren P-E, Bakke S (2003) Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. J Pet Sci Eng 39:177–199

    Article  Google Scholar 

  • Peksa AE, Wolf K-HAA, Zitha PLJ (2015) Bentheimer sandstone revisited for experimental purposes. Mar Pet Geol 67:701e719

    Article  Google Scholar 

  • Peng S, Hu Q, Dultz S, Zhang M (2012) Using X-ray computed tomography in pore structure characterization for a Berea sandstone: resolution effect. J Hydrol 472–473:254–261

    Article  Google Scholar 

  • Pentland CH (2010) Measurements of non-wetting phase trapping in porous media. PhD Thesis, Imperial College London

  • Prodanovic M, Lindquist WB, Seright RS (2006) Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging. J Colloid Interface Sci 298:282–297

    Article  Google Scholar 

  • Ramstad T (2018) Bentheimer micro-CT with waterflood. Digital Rocks Portal. http://www.digitalrocksportal.org/projects/172. Accessed 4 February 2021

  • Ramstad T, Idowu N, Nardi C, Øren P-E (2012) Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks. Transp Porous Media 94:487–504

    Article  Google Scholar 

  • Ribeiro CO, de Carvalho Balaban R (2015) Comparative study between Botucatu and Berea sandstone properties. J S Am Earth Sci 62:58–69

  • Rodríguez de Castro A, Agnaou M, Ahmadi-Sénichault A, Omari A (2019) Application of non-toxic yield stress fluids porosimetry method and pore-network modelling to characterize the pore size distribution of packs of spherical beads. Transp Porous Media 130(3):799–818

    Article  Google Scholar 

  • Rodríguez de Castro A (2014) Flow experiments of yield stress fluids in porous media as a new porosimetry method. PhD Thesis, Arts et Métiers ParisTech, Paris

  • Rodríguez de Castro A, Agnaou M, Ahmadi-Sénichault A, Omari A (2020a) Numerical porosimetry: evaluation and comparison of yield stress fluids method, mercury intrusion porosimetry and pore network modelling approaches. Comput Chem Eng 133:106662

    Article  Google Scholar 

  • Rodríguez de Castro A, Ahmadi-Sénichault A, Omari A (2020b) Determination of the aperture distribution of rough-walled rock fractures with the non-toxic yield stress fluids porosimetry method. Adv Water Resour 146:103794

    Article  Google Scholar 

  • Rodríguez de Castro A, Ahmadi-Sénichault A, Omari A, Savin S, Madariaga L-F (2016) Characterizing porous media with the yield stress fluids porosimetry method. Transp Porous Media 114(1):213–233

    Article  Google Scholar 

  • Rodríguez de Castro A, Ahmadi-Sénichault A, Omari A (2018) Using xanthan gum solutions to characterize porous media with the yield stress fluid porosimetry method: robustness of the method and effects of polymer concentration. Transp Porous Media 122(2):357–374

    Article  Google Scholar 

  • Rodríguez de Castro A, Omari A, Ahmadi-Sénichault A, Bruneau D (2014) Toward a new method of Porosimetry: principles and experiments. Transp Porous Media 101(3):349–364

    Article  Google Scholar 

  • Rodríguez de Castro A, Goyeau B (2021) A pore network modelling approach to investigate the interplay between local and Darcy viscosities during the flow of shear-thinning fluids in porous media. J Colloid Interface Sci 590:446–457

    Article  Google Scholar 

  • Rouquerol J, Baron G, Denoyel R, Giesche H, Groen J, Klobes P, Levitz P, Neimark AV, Rigby S, Skudas R, Sing K, Thommes M, Unger K (2012) Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC technical report). Pure Appl Chem 84(1):107–136

    Article  Google Scholar 

  • Sharqawy MH (2016) Construction of pore network models for Berea and Fontainebleau sandstones using non-linear programing and optimization techniques. Adv Water Resour 98:198–210

    Article  Google Scholar 

  • Skelland AHP (1967) Non-Newtonian flow and heat transfer. Wiley, New York

    Google Scholar 

  • Tembely M, AlSumaiti AM, Rahimov K, Jouini MS (2019) Pore-scale modeling of non-Newtonian fluid flow through micro-CT images of rocks. In: Ao SI, Gelman L, Ki H(eds) Transactions on engineering technologies. WCE 2017, Springer, Singapore

  • Thomson P-R, Aituar-Zhakupova A, Hier-Majumder S (2018) Image segmentation and analysis of pore network geometry in two natural sandstones. Front Earth Sci 6:58

    Article  Google Scholar 

  • Tsakiroglou CD, Payatakes AC (2000) Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation. Adv Water Resour 23:773–789

    Article  Google Scholar 

  • Tsakiroglou CD, Ioannidis MA (2008) Dual-porosity modelling of the pore structure and transport properties of a contaminated soil. Eur J Soil Sci 59:744–761

    Article  Google Scholar 

  • Tsakiroglou CD, Ioannidis MA, Amirtharaj E, Vizika O (2009) A new approach for the characterization of the pore structure of dual porosity rocks. Chem Eng Sci 64:847–859

    Article  Google Scholar 

  • Voigt C, Hubálková J, Giesche H, Aneziris CG (2020) Intrusion and extrusion mercury porosimetry measurements at Al2O3-C: influence of measuring parameter. Microporous Mesoporous Mater 299:110125

    Article  Google Scholar 

  • Wang X, Hou J, Song S, Wang D, Gong L, Ma K, Liu Y, Liu Y, Li Y, Yan L (2018) Combining pressure-controlled porosimetry and rate-controlled porosimetry to investigate the fractal characteristics of full-range pores in tight oil reservoirs. J Pet Sci Eng 171:353–361

    Article  Google Scholar 

  • Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

    Article  Google Scholar 

  • Wildenschild D, Sheppard AP (2012) X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv Water Resour 51:217–246

    Article  Google Scholar 

  • Xiong Q, Baychev TG, Jivkov AP (2016) Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. J Contam Hydrol 192:101–117

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions of the editor and the reviewers of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rodríguez Castro.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez Castro, A., Ahmadi-Sénichault, A. & Omari, A. Analysis of the length scale characterized by the yield stress fluids porosimetry method for consolidated media: comparison with pore network models and mercury intrusion porosimetry. Hydrogeol J 29, 2853–2866 (2021). https://doi.org/10.1007/s10040-021-02401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02401-4

Keywords

Navigation