Skip to main content
Log in

Application of Non-toxic Yield Stress Fluids Porosimetry Method and Pore-Network Modelling to Characterize the Pore Size Distribution of Packs of Spherical Beads

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

With X-ray computed tomography still being flawed as a result of limitations in terms of spatial resolution and cost, toxic mercury intrusion porosimetry (MIP) is nowadays the prevailing technique to determine PSDs of most porous media. Recently, yield stress fluids porosimetry method (YSM) has been identified as a promising clean alternative to MIP. This technique is based on the particular percolation patterns followed by yield stress fluids, which only flow through certain pores when injected at a given pressure gradient. In previous works, YSM was used to characterize natural and synthetic porous media, and the results were compared with MIP showing reasonable agreement. However, considerable uncertainty still remains regarding the characterized pore dimension with each method arising from the highly complex geometry of the interstices in real porous media. Therefore, a critical stage for the validation of YSM consists in achieving successful characterization of model porous media with well-known pore morphology and topology. With this objective in mind, a set of four packs of glass beads each with a given monodisperse bead size were characterized in the present work using different porosimetry methods: experimental YSM, numerically simulation of MIP and pore-network extraction from a 3D image. The results provided by these techniques were compared, allowing the identification of the pore dimensions being characterized in each case. The results of this research elucidate the causes of the discrepancies between the considered porosimetry methods and demonstrate the usefulness of the PSD provided by YSM when predicting flow in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abou Najm, M.R., Atallah, N.M.: Non-Newtonian fluids in action: revisiting hydraulic conductivity and pore size distribution of porous media. Vadose Zone J. 15(9), 1539–1663 (2016)

    Google Scholar 

  • Agnaou, M., Lasseux, D., Ahmadi, A.: From steady to unsteady laminar flow in model porous structures: an investigation of the first Hopf bifurcation. Comput. Fluids 136, 67–82 (2016)

    Google Scholar 

  • Agnaou, M., Lasseux, D., Ahmadi, A.: Origin of the inertial deviation from Darcy’s law: an investigation from a microscopic flow analysis on two-dimensional model structures. Phys. Rev. E 96(4), 043105 (2017)

    Google Scholar 

  • Alfi, M., Barrufet, M., Killough, J.: Effect of pore sizes on composition distribution and enhance recovery from liquid shale: molecular sieving in low permeability reservoirs. Fuel 235, 1555–1564 (2019)

    Google Scholar 

  • Ambari, A., Benhamou, M., Roux, S., Guyon, E.: Distribution des tailles des pores d’un milieu poreux déterminée par l’écoulement d`un fluide à seuil. C. R. Acad. Sci. Paris 311(2), 1291–1295 (1990)

    Google Scholar 

  • Atallah, N.M., Abou Najm, M.R.: Characterization of synthetic porous media using non-Newtonian fluids: experimental device. Eur. J. Soil Sci. 70(2), 257–267 (2019)

    Google Scholar 

  • Benmouffok-Benbelkacem, G., Caton, F., Baravian, C., Skali-Lami, S.: Non-linear viscoelasticity and temporal behavior of typical yield stress fluids. Carbopol, Xanthan and Ketchup. Rheol. Acta 49, 305–314 (2010)

    Google Scholar 

  • Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J.: Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev. E 87(1), 013011 (2013)

    Google Scholar 

  • Bultreys, T., De Boever, W., Cnudde, V.: Imaging and image-based fluid transport modeling at the pore scale in geological materials: a practical introduction to the current state-of-the-art. Earth Sci. Rev. 155, 93–128 (2016)

    Google Scholar 

  • Burlion, N., Bernard, D., Chen, D.: X-ray microtomography, application to microstructure analysis of a cementitious material during leaching process. Cem. Concr. Res. 36, 346–357 (2006)

    Google Scholar 

  • Carnali, J.O.: A dispersed anisotropic phase as the origin of the weak-gel properties of aqueous xanthan gum. J. Appl. Polym. Sci. 43, 929–941 (1991)

    Google Scholar 

  • Chauveteau, G.: Rodlike polymer solution flow through fine pores: influence of pore size on rheological behavior. J. Rheol. 26, 111–142 (1982)

    Google Scholar 

  • Chauveteau, G., Nabzar, L., El Attar, L., Jacquin, C.: Pore structure and hydrodynamics in sandstones. SCA Conference Paper Number 9607 (1996)

  • Chen, G., Lu, S., Zhang, J., Pervukhina, M., Liu, K., Wang, M., Han, T., Tian, S., Li, J., Zhang, Y., Xu, Ch.: A method for determining oil-bearing pore size distribution in shales: a case study from the Damintun Sag, China. J. Petrol. Sci. Eng. 166, 673–678 (2018)

    Google Scholar 

  • Chevalier, T., Talon, L.: Generalization of Darcy’s law for Bingham fluids in porous media: from flow-field statistics to the flow-rate regimes. Phys. Rev. E 91, 023011 (2015a)

    Google Scholar 

  • Chevalier, T., Talon, L.: Moving line model and avalanche statistics of Bingham fluid flow in porous media. Eur. Phys. J. E 38, 76 (2015b)

    Google Scholar 

  • Chhabra, R.P., Richardson, J.F.: Non-Newtonian Flow and Applied Rheology: Engineering Applications. Butterworth-Heinemann/Elsevier, Amsterdam (2008)

    Google Scholar 

  • Cieszko, M., Kempinski, M., Czerwinski, T.: Limit models of pore space structure of porous materials for determination of limit pore size distributions based on mercury intrusion data. Transp. Porous Media 127(2), 433–458 (2019)

    Google Scholar 

  • Dakhil, H., Auhl, D., Wierschem, A.: Infinite-shear viscosity plateau of salt-free aqueous xanthan solutions. J. Rheol. 63(1), 63–69 (2019)

    Google Scholar 

  • Dario, A.F., Hortencio, L.M.A., Sierakowski, M.R., Neto, J.C.Q., Petri, D.F.S.: The effect of calcium salts on the viscosity and adsorption behavior of xanthan. Carbohyd. Polym. 84, 669–676 (2011)

    Google Scholar 

  • Diamond, S.: Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 30, 1517–1525 (2000)

    Google Scholar 

  • Finney, J.L.: Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. A 319, 479–493 (1970)

    Google Scholar 

  • Finney, J.: Finney packing of spheres. Digital Rocks Portal, Digital Rocks Portal, 15 April 2016 (2016). http://www.digitalrocksportal.org/projects/47. Accessed 3 Dec 2018

  • Garcia-Ochoa, F., Santosa, V.E., Casas, J.A., Gómez, E.: Xanthan gum: production, recovery, and properties. Biotechnol. Adv. 18, 549–579 (2000)

    Google Scholar 

  • García-Ochoa, F., Casas, J.A.: Apparent yield stress in xanthan gum solutions at low concentrations. Chem. Eng. J. 53, B41–B46 (1994)

    Google Scholar 

  • Giesche, H.: Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23, 1–11 (2006)

    Google Scholar 

  • Gostick, J.: T: versatile and efficient pore network extraction method using marker-based watershed segmentation. Phys. Rev. E 96(2), 023307 (2017a)

    Google Scholar 

  • Gostick, J.T.: Versatile and efficient pore network extraction method using marker-based watershed segmentation. Phys. Rev. E 96(2), 023307 (2017b)

    Google Scholar 

  • Gostick, J., Aghighi, M., Hinebaugh, J., Tranter, T., Hoeh, M.A., Day, H., Spellacy, B., Sharqawy, M.H., Bazylak, A., Burns, A., Lehnert, W.: OpenPNM: a pore network modeling package. Comput. Sci. Eng. 18(4), 60–74 (2016)

    Google Scholar 

  • Gostick, J.T., Khan, Z.A., Tranter, T.G., Kok, M.D., Agnaou, M., Sadeghi, M., Jervis, R.: PoreSpy: a python toolkit for quantitative analysis of porous media images. J. Open Source Softw. 4(37), 1296 (2019). https://doi.org/10.21105/joss.01296

    Article  Google Scholar 

  • Grattoni, C.A.: Influence of pore scale structure on electrical resistivity of reservoir rocks. PhD Thesis, University of London (Imperial College) (1994)

  • Hildebrand, T., Ruegsegger, D.: A new method of the model-independent assessment of thickness in the tree-dimensional images. J. Microsc. 185(1), 67–75 (1997)

    Google Scholar 

  • Houston, A.N., Otten, W., Falconer, R., Monga, O., Baveye, P.C., Hapca, S.M.: Quantification of the pore size distribution of soils: assessment of existing software using tomographic and synthetic 3D images. Geoderma 299, 73–82 (2017)

    Google Scholar 

  • Hudyma, N., Avar, B.B., Karakouzian, M.: Compressive strength and failure modes of Lithophysae-Risch Topopah spring tuff specimens and analog models containing cavities. Eng. Geol. 73(1/2), 179–190 (2004)

    Google Scholar 

  • Jones, D.M., Walters, K.: The behavior of polymer solutions in extension-dominated flows with applications to enhanced oil recovery. Rheol. Acta 28, 482–498 (1989)

    Google Scholar 

  • Khodja, M.: Les fluides de forage: étude des performances et considerations environnementales, PhD Thesis, Institut National Polytechnique de Toulouse (2008)

  • Kumar, A., Rao, K.M., Han, S.S.: Application of xanthan gum as polysaccharide in tissue engineering: a review. Carbohyd. Polym. 180, 128–144 (2018)

    Google Scholar 

  • León y León, C.A.: New perspectives in mercury porosimetry. Adv. Colloid Interface Sci. 76–77, 341–372 (1998)

    Google Scholar 

  • Li, X., Kang, Y., Haghighi, M.: Investigation of pore size distributions of coals with different structures by nuclear magnetic resonance (NMR) and mercury intrusion porosimetry (MIP). Measurements 116, 122–128 (2018b)

    Google Scholar 

  • Li, H., Li, H., Wang, K., Liu, Ch.: Effect of rock composition microstructure and pore characteristics on its rock mechanics properties. Int. J. Min. Sci. Technol. 28(2), 303–308 (2018a)

    Google Scholar 

  • Lindquist, W.B., Venkatarangan, A.: Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res. Solid Earth 105(B9), 21509–21527 (2000)

    Google Scholar 

  • Malvault, G., Ahmadi, A., Omari, A.: Numerical simulation of yield stress fluid flow in capillary bundles: influence of the form and the axial variation in the cross section. Transp. Porous Media 120(2), 255–270 (2017)

    Google Scholar 

  • Malvault, G.: Détermination expérimentale de la distribution de taille de pores d’un milieu poreux par l’injection d’un fluide à seuil ou par analyse fréquentielle, PhD thesis, Arts et Métiers ParisTech (2013)

  • Minagawa, H., Nishikawa, Y., Ikeda, I., Miyazaki, K., Takahara, N., Sakamoto, Y., Komai, T., Narita, H.: Characterization of sand sediment by pore size distribution and permeability using proton nuclear magnetic resonance measurement. J. Geophys. Res. 113, B07210 (2008)

    Google Scholar 

  • Mongruel, A., Cloitre, M.: Axisymmetric orifice flow for measuring the elongational viscosity of semi-rigid polymer solutions. J. Nonnewton. Fluid Mech. 110, 27–43 (2003)

    Google Scholar 

  • Nash, S., Rees, D.A.S.: The effect of microstructure on models for the flow of a bingham fluid in porous media: one-dimensional flows. Transp. Porous Media 116(3), 1073–1092 (2017)

    Google Scholar 

  • Nolan, G.T., Kavanagh, P.E.: The size distribution of interstices in random packings of spheres. Powder Technol. 78, 231–238 (1994)

    Google Scholar 

  • Oukhlef, A., Champmartin, S., Ambari, A.: Yield stress fluids method to determine the pore size distribution of a porous medium. J. Nonnewton. Fluid Mech. 204, 87–93 (2014)

    Google Scholar 

  • Oukhlef, A.: Détermination de la distribution de tailles de pores d’un milieu poreux, PhD thesis, Arts et Métiers ParisTech (2011)

  • Palaniraj, P., Jayaraman, V.: Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 106, 1–12 (2011)

    Google Scholar 

  • Pomonis, P., Margellou, A.: The pore length, the pore number and the pore anisotropy distributions in porous materials. Microporous Mesoporous Mater. 271, 41–51 (2018)

    Google Scholar 

  • Prodanovic, M., Lindquist, W.B., Seright, R.S.: Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging. J. Colloid Interface Sci. 298, 282–297 (2006)

    Google Scholar 

  • Rodríguez de Castro, A.: Flow experiments of yield stress fluids in porous media as a new porosimetry method. PhD thesis, Arts et Métiers ParisTech (2014)

  • Rodríguez de Castro, A.: Extending Darcy’s law to the flow of Yield Stress fluids in packed beads: method and experiments. Adv. Water Resour. 126, 55–64 (2019)

    Google Scholar 

  • Rodríguez de Castro, A., Radilla, G.: Non-Darcian flow of shear-thinning fluids through packed beads: experiments and predictions using Forchheimer’s law and Ergun’s equation. Adv. Water Resour. 100, 35–47 (2017a)

    Google Scholar 

  • Rodríguez de Castro, A., Radilla, G.: Flow of yield and Carreau fluids through rough-walled rock fractures: prediction and experiments. Water Resour. Res. 53(7), 6197–6217 (2017b)

    Google Scholar 

  • Rodríguez de Castro, A., Omari, A., Ahmadi-Sénichault, A., Bruneau, D.: Toward a new method of porosimetry: principles and experiments. Transp. Porous Media 101(3), 349–364 (2014)

    Google Scholar 

  • Rodríguez de Castro, A., Ahmadi-Sénichault, A., Omari, A., Savin, S., Madariaga, L.-F.: Characterizing porous media with the yield stress fluids porosimetry method. Transp. Porous Media 114(1), 213–233 (2016)

    Google Scholar 

  • Rodríguez de Castro, A., Ahmadi-Sénichault, A., Omari, A.: Using xanthan gum solutions to characterize porous media with the yield stress fluid porosimetry method: robustness of the method and effects of polymer concentration. Transp. Porous Media 122(2), 357–374 (2018)

    Google Scholar 

  • Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., Unger, K.: Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report). Pure Appl. Chem. 84, 107–136 (2012)

    Google Scholar 

  • Skelland, A.H.P.: Non-Newtonian Flow and Heat Transfer. Wiley, New York (1967)

    Google Scholar 

  • Song, K.-W., Kim, Y.-S., Chang, G.S.: Rheology of concentrated xanthan gum solutions: steady shear flow behavior. Fibers and Polymers 7, 129–138 (2006)

    Google Scholar 

  • Sorbie, K.S.: Polymer-Improved Oil Recovery. Blackie and Son Ltd, Glasgow (1991)

    Google Scholar 

  • United Nations: United Nations Environment Programme: Text of the Minamata Convention on Mercury for adoption by the Conference of Plenipotentiaries. The Conference of Plenipotentiaries on the “Minamata Convention on Mercury” (2013). http://www.mercuryconvention.org/. Accessed 12 Dec 2018

  • Wang, X., Hou, J., Song, S., Wang, D., Gong, L., Ma, K., Liu, Y., Liu, Y., Li, Y., Yan, L.: Combining pressure-controlled porosimetry and rate-controlled porosimetry to investigate the fractal characteristics of full-range pores in tight oil reservoirs. J. Petrol. Sci. Eng. 171, 353–361 (2018)

    Google Scholar 

  • Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273 (1921)

    Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Google Scholar 

  • Withcomb, P.J., Macosko, C.W.: Rheology of xanthan gum. J. Rheol. 22(5), 493–505 (1978)

    Google Scholar 

  • Wu, H., Zhang, C., Ji, Y., Liu, R., Wu, H., Zhang, Y., Geng, Z., Zhang, Y., Yang, J.: An improved method of characterizing the pore structure in tight oil reservoirs: integrated NMR and constant-rate-controlled porosimetry data. J. Petrol. Sci. Eng. 166, 778–796 (2018)

    Google Scholar 

  • Yang, X., Mehmani, Y., Perkins, W.A., Pasquali, A., Schönherr, M., Kim, K., Perego, M., Parks, M.L., Trask, N., Balhoff, M.T., Richmond, M.C.: Intercomparison of 3D pore-scale flow and solute transport simulation methods. Adv. Water Resour. 95, 176–189 (2016)

    Google Scholar 

  • Zhang, N., He, M., Zhang, B., Qiao, F., Sheng, H., Hu, Q.: Pore structure characteristics and permeability of deep sedimentary rocks determined by mercury intrusion porosimetry. J. Earth Sci. 27(4), 670–676 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rodríguez de Castro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez de Castro, A., Agnaou, M., Ahmadi-Sénichault, A. et al. Application of Non-toxic Yield Stress Fluids Porosimetry Method and Pore-Network Modelling to Characterize the Pore Size Distribution of Packs of Spherical Beads. Transp Porous Med 130, 799–818 (2019). https://doi.org/10.1007/s11242-019-01339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01339-2

Keywords

Navigation