Skip to main content

Advertisement

Log in

Catchment-scale groundwater-flow and recharge paradox revealed from base flow analysis during the Australian Millennium Drought (Mt Lofty Ranges, South Australia)

Paradoxe de l’écoulement et de la recharge des eaux souterraines à l’échelle du bassin versant révélé à partir de l’analyse du débit de base sur la période de la Sècheresse du Millénaire Australien (chaînes de montagnes du Mont Lofty, Australie du Sud)

La paradoja del flujo y la recarga de aguas subterráneas a escala de cuenca revelada a partir del análisis del flujo de base durante la Australian Millennium Drought (Mt Lofty Ranges, Australia del Sur)

对澳大利亚千年干旱期(南澳大利亚Lofty Ranges山脉)的基流分析揭示流域尺度地下水流和补给的悖论

Fluxo de águas subterrâneas em escala de bacia e paradoxo de recarga revelado a partir da análise de fluxo de base durante a seca do milênio australiana (Cadeia do Monte Lofty, Austrália do Sul)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Catchment-scale recharge and water balance estimates are commonly made for the purposes of water resource management. Few catchments have had these estimates ground-truthed. One confounding aspect is that runoff and soil-water inputs commonly occur throughout the year; however, in climates with strong dry seasons, base flow can be directly sampled. In an experimental catchment in the Mt. Lofty Ranges of South Australia, run-of-stream hydrochemical parameters were monitored. In this Mediterranean climate during the Millennium Drought (2001–2009), the stream was reduced to disconnected groundwater-fed pools. Two groundwater types were identified: (1) high-salinity type from meta-shale bedrock with thick, clayey regolith and (2) low-salinity type from meta-sandstone bedrock with sandy regolith. End-member mixing using silica and chloride concentrations and robust 87Sr/86Sr ratios reveal an apparent groundwater-flow paradox as follows. According to chloride mass balance and spatial distribution of hydrogeological units, the low-salinity groundwater type has seven times more recharge than the high-salinity type. Over the 28-year record, low-salinity groundwater contributed 25% of stream water, whereas high-salinity groundwater contributed 2–5%. During the drought year, however, annual stream flow from the high-salinity groundwater contributed 50%, whereas low-salinity groundwater contributed 18%. High-salinity groundwater dominated dry-season base flow during all years. The paradox can be resolved as follows: The meta-sandstone terrane drains quickly following wet-season recharge and therefore contributes little to dry-season base flow. Conversely, the meta-shale terrane drains slowly and therefore provides stream flow during dry seasons and drought years.

Résumé

Les évaluations de la recharge et du bilan hydrique à l’échelle du bassin versant sont communément réalisées dans un but de gestion de la ressource en eau. Peu de bassins versants ont bénéficié d’une évaluation de ce genre comportant de plus, une vérification sur le terrain. Un aspect perturbant est. que le ruissellement et l’infiltration se produisent généralement tout au long de l’année. Cependant, sous les climats à fortes saisons sèches, le débit de base peut être directement appréhendé. Dans un bassin versant expérimental des chaînes de montagnes du Mont Lofty, dans le Sud de l’Australie, les paramètres hydrochimiques de l’écoulement réel ont fait l’objet d’une surveillance. Sous ce climat méditerranéen au cours de la Sècheresse du Millénaire (2001–2009), les cours d’eau ont été réduits à des pièces d’eau déconnectées alimentées par les eaux souterraines. Deux types d’eaux souterraines ont été identifiés: (1) un type à forte salinité lié à un socle de méta-schiste avec un régolithe épais et argileux et (2) un type à faible salinité lié à un socle de méta-grès avec un régolithe sableux. Le mélange des termes extrêmes, mettant en jeu les concentrations en silice et chlorure et des rapports 87Sr/86 Sr robustes, révèle un paradoxe apparent des eaux souterraines, qui est. le suivant: selon le bilan de masse des chlorures et la distribution spatiale des unités hydrogéologiques, le type d’eaux souterraines à basse salinité bénéficie de 7 fois plus de recharge que le type à haute salinité. Sur une période d’enregistrement de 28 ans, les eaux souterraines à basse salinité ont contribué à hauteur de 25% aux eaux de surface, tandis que les eaux souterraines à haute salinité n’ont contribué qu’à hauteur de 2 à 5%. Au cours de l’année sèche, cependant, le débit annuel du cours d’eau provenant des eaux souterraines à haute salinité a contribué à hauteur de 50% tandis que les eaux souterraines de faible salinité à hauteur de 18%. Les eaux souterraines à haute salinité ont dominé le débit de base de saison sèche pendant toutes ces années. Le paradoxe peut être résolu de la manière suivante: Le terrain de méta-grès se ressuie rapidement après la recharge de la sison humide et contribue peu ainsi au débit de base de la saison sèche. Inversement, le terrain de méta-schiste se ressuie lentement et alimente le cours d’eau pendant les saisons sèches et les années de sécheresse.

Resumen

Las estimaciones de recarga y balance hídrico a escala de cuenca se suelen plantear para la gestión de los recursos hídricos. Son escasas las cuencas que han tenido estas estimaciones comprobadas a partir de experiencias de campo. Un aspecto que resulta confuso es que el escurrimiento y los aportes de agua del suelo suelen producirse a lo largo del año. Sin embargo, en los climas con marcadas estaciones secas, el flujo de base puede ser muestreado directamente. En una cuenca experimental en Mt. Lofty Ranges de Australia Meridional se monitorearon los parámetros hidroquímicos de los flujos de escurrimiento. En este clima mediterráneo, durante la sequía del milenio (2001–2009), el caudal se redujo a lagunas desconectadas alimentadas por aguas subterráneas. Se identificaron dos tipos de aguas subterráneas: (1) el de alta salinidad procedente de un basamento de esquistos con un regolito de gran espesor y arcilla y (2) el de baja salinidad procedente de un basamento de una arenisca metamórfica con un regolito de arena. La mezcla de los miembros finales utilizando concentraciones de sílice y cloruro y las sólidas relaciones 87Sr/86Sr revelan una aparente paradoja en el flujo subterránea, que es el siguiente: de acuerdo con el balance de masa de cloruro y la distribución espacial de las unidades hidrogeológicas, el agua subterránea de baja salinidad tiene siete veces más recarga que la de alta salinidad. En los 28 años de registro, las aguas subterráneas de baja salinidad contribuyeron con el 25% del agua de los arroyos, mientras que las aguas subterráneas de alta salinidad contribuyeron con el 2–5%. Sin embargo, durante el año de sequía, el flujo anual de los arroyos procedentes de las aguas subterráneas de alta salinidad contribuyó en un 50%, mientras que las de baja salinidad aportaron un 18%. Las aguas subterráneas de alta salinidad dominaron el flujo de base de la estación seca durante todos los años. La paradoja puede resolverse de esta manera: la arenisca metamórfica drena rápidamente después de la recarga de la estación húmeda y, por lo tanto, contribuye escasamente al flujo de base de la estación seca. Por el contrario, los esquistos drenan lentamente y por lo tanto proporcionan un flujo de caudal durante las estaciones secas y los años de sequía.

摘要

流域尺度水分补给和水平衡计算通常是为了水资源管理的目的而进行的。很少有人对流域水平衡估算进行实地验证。(在进行径流分析时)一个令人困扰的问题是,通常径流里总含有降水产流和土壤水补给。但是,在有强旱季的气候下,可以直接采集基流水样。在南澳大利亚的Lofty Ranges山的一个实验流域,我们监测了溪流的水化学参数。在这个地中海式气候的千年干旱期(2001–2009年),溪水流量减少到只剩下不连续的靠地下水补给维持的系列水洼。(我们的研究)确定了两种地下水类型:(1)来自具有厚粘土风化层的变质页岩基岩的高盐度类型;(2)来自具有砂质风化层的变质砂岩基岩的低盐度类型。基于二氧化硅、氯化物浓度、和强适用性的87Sr/86Sr的端元混合分析揭示了研究区一个表象上的地下水流悖论:根据氯离子的质量平衡分析结果和水文地质单元的空间分布,(我们发现)低盐度型地下水的补给量是高盐度型地下水的7倍。在28年的记录中,低盐度地下水贡献了溪水的25%,而高盐度地下水只贡献了2–5%。但是,在干旱年,高盐度地下水的贡献占年径流量的50%,而低盐度地下水只贡献了18%。在所有年份中,高盐度地下水成为旱季基流的主导。对这个看起来矛盾的问题可以作如下解释:在雨季补给后,变质砂岩地层地下水很快流走,因此对旱季基流的贡献很小。相反,变质页岩地层排水缓慢,因此在干旱季节和干旱年份提供了溪流的径流量。

Resumo

As estimativas de recarga em escala de bacia e balanço hídrico são comumente feitas para fins de gestão de recursos hídricos. Poucas bacias hidrográficas tiveram essas estimativas verificadas a campo. Um aspecto confuso é que o escoamento e as entradas de água no solo geralmente ocorrem ao longo do ano. No entanto, em climas com fortes estações secas, o fluxo de base pode ser amostrado diretamente. Em uma bacia hidrográfica experimental na Cadeia do Monte Lofty, Austrália do Sul, parâmetros hidroquímicos de fluxo em corrego foram monitorados. Neste clima mediterrâneo, durante a Seca do Milênio (2001–2009), o córrego foi reduzido a piscinas alimentadas com água subterrânea desconectadas. Dois tipos de água subterrânea foram identificados: (1) tipo de alta salinidade de rocha de metaxisto com regolito argiloso espesso e (2) tipo de baixa salinidade de rocha de metarenito com regolito arenoso. A mistura de membros finais usando concentrações de sílica e cloreto e relações 87Sr/86Sr robustas revelam um aparente paradoxo de fluxo de água subterrânea como segue: De acordo com o balanço de massa de cloreto e distribuição espacial de unidades hidrogeológicas, o tipo de água subterrânea de baixa salinidade tem sete vezes mais recarga do que o tipo de alta salinidade. Ao longo do registro de 28 anos, as águas subterrâneas de baixa salinidade contribuíram com 25% da água do córrego, enquanto as águas subterrâneas de alta salinidade contribuíram com 2 a 5%. Durante o ano de seca, no entanto, o fluxo anual da água subterrânea de alta salinidade contribuiu com 50%, enquanto a água subterrânea de baixa salinidade contribuiu com 18%. Águas subterrâneas de alta salinidade dominaram o fluxo de base da estação seca em todos os anos. O paradoxo pode ser resolvido da seguinte forma: O terreno de metarenito drena rapidamente após a recarga na estação chuvosa e, portanto, contribui pouco para o fluxo de base na estação seca. Por outro lado, o terreno com metaxisto drena lentamente e, portanto, fornece fluxo durante as estações secas e anos de seca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adel MM (2012) Downstream ecocide from upstream water piracy. Am J Environ Sci 8(5):528–548

    Article  Google Scholar 

  • Allison G, Hughes M (1983) The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. J Hydrol 60:157–173

    Article  Google Scholar 

  • Anderson TA, Bestland EA, Soloninka L, Wallis I, Banks EW, Pichler M (2017) A groundwater salinity hotspot and its connection to an intermittent stream identified by environmental tracers (Mt Lofty Ranges, South Australia). Hydrogeol J 25:2435–2451

    Article  Google Scholar 

  • Anderson TA, Bestland EA, Wallis I, Guan HD (2019) Salinity balance and historical flushing quantified in a high-rainfall catchment (Mount Lofty Ranges, South Australia). Hydrogeol J 27:1–16

    Article  Google Scholar 

  • Appelo CAJ, Postma D (eds) (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Dordrecht, The Netherlands

    Google Scholar 

  • Bailly-Comte V, Jourde H, Pistre S (2009) Conceptualization and classification of groundwater–surface water hydrodynamic interactions in karst watersheds: case of the karst watershed of the Coulazou River (southern France). J Hydrol 376:456–462

    Article  Google Scholar 

  • Banks EW, Simmons C, Cranswick R, Love A, Werner A, Bestland E, Wood M, Wilson T (2009) Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: a conceptual model (Australia). Hydrogeol J 17:1969–1989

    Article  Google Scholar 

  • Banks EW, Simmons CT, Love AJ, Shand P (2011) Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: implications for regional scale water quantity and quality. J Hydrol 404:30–49

    Article  Google Scholar 

  • Bestland EA, Stainer G (2013) Down-slope change in soil hydrogeochemistry due to seasonal water table rise: implications for groundwater weathering. Catena 111:122–131

    Article  Google Scholar 

  • Bestland EA, Milgate S, Chittleborough D, Vanleeuwen J, Pichler M, Soloninka L (2009) The significance and lag-time of deep through flow: an example from a small, ephemeral catchment with contrasting soil types in the Adelaide Hills, South Australia. Hydrol Earth Syst Sci 13:1–14

    Article  Google Scholar 

  • Bestland EA, Liccioli C, Soloninka L, Chittleborough DJ, Fink D (2016) Catchment-scale denudation and chemical erosion rates determined from 10 be and mass balance geochemistry (Mt. Lofty Ranges of South Australia). Geomorphology 270:40–54

    Article  Google Scholar 

  • Bestland E, George A, Green G, Olifent V, Mackay D, Whalen M (2017) Groundwater dependent pools in seasonal and permanent streams in the Clare Valley of South Australia. J Hydrol: Regional Stud 9:216–235

    Google Scholar 

  • Bishop K, Seibert J, Kohler S, Laudon H (2004) Resolving the double paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrol Process 18:185–189

    Article  Google Scholar 

  • Bureau of Meteorology (2016) Climate statistics for Australian sites. http://www.bom.gov.au/climate/averages/tables/ca_sa_names.shtml. Accessed January 2021

  • Bunn SE, Thoms MC, Hamilton SK, Capon SJ (2006) Flow variability in dryland rivers: boom, bust and the bits in between. River Res Appl 22:179–186

    Article  Google Scholar 

  • Capo RC, Stewart BW, Chadwick OA (1998) Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82:197–225

    Article  Google Scholar 

  • Cartwright I, Hall S, Tweed S, Leblanc M (2009) Geochemical and isotopic constraints on the interaction between saline lakes and groundwater in Southeast Australia. Hydrogeol J 17:1991–2004

    Article  Google Scholar 

  • Cartwright I, Gilfedder B, Hofmann H (2014) Contrasts between estimates of baseflow help discern multiple sources of water contributing to rivers. Hydrol Earth Syst Sci 18:15–30

    Article  Google Scholar 

  • Cartwright I, Currell MJ, Cendon DI, Meredith KT (2020) A review of the use of radiocarbon to estimate groundwater residence times in semi-arid and arid areas. J Hydrol 580:124247

    Article  Google Scholar 

  • Cendón D, Larsen J, Jones B, Nanson G, Rickleman D, Hankin S, Juan J, Pueyo J, Maroulis J (2010) Freshwater recharge into a shallow saline groundwater system, Cooper Creek floodplain, Queensland, Australia. J Hydrol 392:150–163

    Article  Google Scholar 

  • Cendón D, Hankin S, Williams J, Van der Ley M, Peterson M, Hughes C, Meredith K, Graham I, Hollins S, Levchenko V (2014) Groundwater residence time in a dissected and weathered sandstone plateau: Kulnura–Mangrove Mountain aquifer, NSW, Australia. Aust J Earth Sci 61:475–499

    Article  Google Scholar 

  • Chadwick OA, Derry LA, Bern CR, Vitousek PM (2009) Changing sources of strontium to soils and ecosystems across the Hawaiian Islands. Chem Geol 267:64–76

    Article  Google Scholar 

  • Chen X, Chen DY, Chen X-H (2006) Simulation of baseflow accounting for the effect of bank storage and its implication in baseflow separation. J Hydrol 327:539–549

    Article  Google Scholar 

  • Clark M, Fan Y, Lawrence D, Adam J, Bolster D, Gochis D et al (2015) Improving the representation of hydrologic processes in earth system models. Water Resour Res 51:5929–5956

    Article  Google Scholar 

  • Cook PG (2003) A guide to regional groundwater flow in fractured rock aquifers. CSIRO, Australia

    Google Scholar 

  • Cook PG, Herczeg AL (2000) Environmental tracers in subsurface hydrology. Springer, New York, 529 pp

    Book  Google Scholar 

  • Coplen TB, Herczeg AL, Barnes C (2000) Isotope engineering—using stable isotopes of the water molecule to solve practical problems. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Springer, New York, pp 79–110

  • Cranswick R (2005) Hillslope scale geological controls on surface water: groundwater interaction: evidence of active recharge to a fractured rock aquifer. In: Honours Thesis, Flinders University South Australia, Adelaide, Australia

    Google Scholar 

  • Currell MJ, Cartwright I (2011) Major-ion chemistry, δ13C and 87Sr/86Sr as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin, China. Hydrogeol J 19:835–850

    Article  Google Scholar 

  • Derry LA, Chadwick OA (2007) Contributions from Earth’s atmosphere to soil. Elements 3:333–338

    Article  Google Scholar 

  • Drexel JF, Preiss WV, Parker A (1993) The geology of South Australia, vol 1: the Precambrian. Bull Geol Serv South Aust 54

  • Drexel JF, Preiss WV (1995) (Eds): The geology of South Australia, vol 2: the Phanerozoic. Bull Geol Serv South Aust 54

  • Edwards PJ, Williard KW, Schoonover JE (2015) Fundamentals of watershed hydrology. J Contemp Water Res Educ 154:3–20

    Article  Google Scholar 

  • EPA (2018) Stable isotope mixing models for estimating source proportions. United States Environmental Protection Agency. https://www.epa.gov/eco-research/stable-isotope-mixing-models-estimating-source-proportions. Accessed January 2021

  • Fan Y, Clark M, Lawrence D, Swenson S, Band L, Brantley S, Brooks P, Dietrich W, Flores A, Grant G, Kirchner J, Mackay D, McDonnell J, Milly P, Sullivan P, Tague C, Ajami H, Chaney N, Hartmann A, Hazenberg P, McNamara J, Pelletier J, Perket J, Rouholahnejad-Freund E, Wagener T, Zeng X, Beighley E, Buzan J, Huang M, Livneh B, Mohanty B, Nijssen B, Safeeq M, Shen C, van Verseveld W, Volk J, Yamazaki D (2018) Hillslope hydrology in global change research and earth system modeling. Water Resour Res 55:1737–1772

    Article  Google Scholar 

  • Foden J, Barovich K, Jane M, O’Halloran G (2001) Sr-isotopic evidence for late Neoproterozoic rifting in the Adelaide geosyncline at 586 ma: implications for a Cu ore forming fluid flux. Precambrian Res 106:291–308

    Article  Google Scholar 

  • Freund M, Henley BJ, Karoly DJ, Allen KJ, Baker PJ (2017) Multi-century cool-and warm-season rainfall reconstructions for Australia’s major climatic regions. Clim Past 13:1751–1770

    Article  Google Scholar 

  • Furness K (2006) Hydrogeochemical determination of components in stream flow during a rainfall event: Scott Creek, Mount Lofty Ranges. Honours Thesis, Flinders University, Australia

  • Gonfiantini R (1986) Environmental isotopes in lake studies In: Handbook of environmental isotope geochemistry. Terrestrial Environ B:113–168

  • Graustein WC (1989) 87 Sr/86 Sr ratios measure the sources and flow of strontium in terrestrial ecosystems, stable isotopes in ecological research. Springer, Heidelberg, Germany, pp 491–512

  • Green G, Zulfic D (2008) Summary of groundwater recharge estimates for the catchments of the Western Mount Lofty Ranges prescribed water resources area. Department of Water, Land and Biodiversity Conservation, Adelaide, Australia

    Google Scholar 

  • Guan H, Love A, Simmons C, Hutson J, Ding Z (2010a) Catchment conceptualisation for examining applicability of chloride mass balance method in an area with historical forest clearance. Hydrol Earth Syst Sci 14:1233

    Article  Google Scholar 

  • Guan H, Love A, Simmons C, Makhnin O, Kayaalp A (2010b) Factors influencing chloride deposition in a coastal hilly area and application to chloride deposition mapping. Hydrol Earth Syst Sci 14(5):801

    Article  Google Scholar 

  • Harrington G (2004a) Hydrogeological investigation of the Mount Lofty Ranges, Progress report 3: borehole water and formation characteristics at the Scott bottom research site, Scott Creek catchment. Report DWLBC 2004/03, Department of Water, Land and Biodiversity Conservation, Adelaide, Australia

  • Harrington G (2004b) Hydrogeological investigation of the Mount Lofty Ranges: Progress report 4—groundwater–surface water interactions in the Scott Creek, Marne River and Tookayerta Creek catchments. Report DWLBC 2004/03. Department of Water, Land and Biodiversity Conservation, Adelaide, Australia

    Google Scholar 

  • Hinkle S, Duff J, Triska F, Laenen A, Gates E, Bencala K, Wentz D, Silva S (2001) Linking hyporheic flow and nitrogen cycling near the Willamette River: a large river in Oregon, USA. J Hydrol 244:157–180

    Article  Google Scholar 

  • Hughes CE, Crawford J (2012) A new precipitation weighted method for determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data. J Hydrol 464-465:344–351

    Article  Google Scholar 

  • James-Smith J, Harrington G (2002) Hydrogeological investigation of the Mount Lofty Ranges: progress report 1—hydrogeology and drilling phase 1 for Scott Creek catchment. The Department for Water, Land and Biodiversity Conservation, Adelaide, Australia

  • Kayaalp AS (2001) Application of rainfall chemistry and isotope data to hydrometeorological modelling. PhD Thesis, Flinders University of South Australia, Flinders, Australia

    Google Scholar 

  • Kehew AE (2000) Applied chemical hydrogeology. Prentice Hall, Englewood Cliffs, NJ

  • King A, Raiber M, Cox ME (2014) Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer–stream connectivity during drought and flood: Cressbrook Creek, Southeast Queensland, Australia. Hydrogeol J 22:481–500

    Article  Google Scholar 

  • Kirchner JW (2003) A double paradox in catchment hydrology and geochemistry. Hydrol Process 17:871–874

    Article  Google Scholar 

  • Kretschmer PJC (2007) Determining the contribution of groundwater to stream flow in an upland catchment using a combined salinity mixing model and modified curve number approach. Honours Thesis, Flinders University South Australia, Adelaide

    Google Scholar 

  • Liu F, Gilkes RJ, Hart R, Bruand A (2002) Differences in potassium forms between cutans and adjacent soil matrix in a grey clay soil. Geoderma 106:289–303

    Article  Google Scholar 

  • Liu S, Xu Z, Zhu Z, Jia Z, Zhu M (2013) Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River basin, China. J Hydrol 487:24–38

    Article  Google Scholar 

  • Martinez JL, Raiber M, Cox ME (2015) Assessment of groundwater–surface water interaction using long-term hydrochemical data and isotope hydrology: headwaters of the Condamine River, Southeast Queensland, Australia. Sci Total Environ 536:499–516

    Article  Google Scholar 

  • McMahon T, Finlayson B (2003) Droughts and anti-droughts: the low flow hydrology of Australian rivers. Freshw Biol 48:1147–1160

    Article  Google Scholar 

  • Meinzer OE (1923) Outline of ground-water hydrology, with definitions. US Geol Surv Water Suppl Pap 494

  • Milgate SA (2007) Hydrochemical investigation of flow pathways through quartz-sand and duplex soils during a storm event: Mackreath Creek, Mount Lofty Ranges. Honours Thesis, Flinders University South Australia, Adelaide

    Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Rem Sens Environ 115:1781–1800

    Article  Google Scholar 

  • Murphy BF, Timbal B (2008) A review of recent climate variability and climate change in southeastern Australia. Int J Climatol 28:859–879

    Article  Google Scholar 

  • Murray Darling Basin Commission (2006) River Murray system. Drought Update, July, Ref 06/17190, Murray-Darling Basin Commission, Canberra

  • Nicholls N, Drosdowsky W, Lavery B (1997) Australian rainfall variability and change. Weather 52:66–72

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269

    Article  Google Scholar 

  • Phillips DL, Newsome SD, Gregg JW (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–527

    Article  Google Scholar 

  • Plummer L, Glynn P (2013) Radiocarbon dating in groundwater systems, chap 4. In: Suckow A, Aggarwal PK, Araguas-Araguas LJ (eds) Isotope methods for dating old groundwater. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Poulsen DL, Simmons CT, LeGalle LaSalle C, Cox JW (2006) Assessing catchment-scale spatial and temporal patterns of groundwater and stream salinity. Hydrogeol J 14:1339–1359

    Article  Google Scholar 

  • Poszwa A, Ferry B, Dambrine E, Pollier B, Wickman T, Loubet M, Bishop K (2004) Variations of bioavailable Sr concentration and 87 Sr/86 Sr ratio in boreal forest ecosystems. Biogeochemistry 67:1–20

    Article  Google Scholar 

  • Preiss WV (1987) The Adelaide geosyncline: late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. Bull Geol Surv South Australia 53

  • Raiber M, Webb JA, Bennetts DA (2009) Strontium isotopes as tracers to delineate aquifer interactions and the influence of rainfall in the basalt plains of southeastern Australia. J Hydrol 367:188–199

    Article  Google Scholar 

  • Rey N, Rosa E, Cloutier V, Lefebvre R (2018) Using water stable isotopes for tracing surface and groundwater flow systems in the Barlow-Ojibway Clay Belt, Quebec, Canada. Can Water Res J/Rev Can Ressour Hydriq 43:173–194

    Article  Google Scholar 

  • SARIG (South Australian Resources Information Gateway) (2019) https://map.sarig.sa.gov.au/. Accessed January 2021

  • SAW SA (2017) Water data set: Scott Creek @ Scott Bottom - A5030502AA. http://wds.amlr.waterdata.com.au/StationDetails.aspx?sno=A5030502AA. Accessed January 2021

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370

    Article  Google Scholar 

  • Schorghofer N, Jensen B, Kudrolli A, Rothman DH (2004) Spontaneous channelization in permeable ground: theory, experiment, and observation. J Fluid Mech 503:357–374

    Article  Google Scholar 

  • Sheldon F, Fellows CS (2010) Water quality in two Australian dryland rivers: spatial and temporal variability and the role of flow. Mar Freshw Res 61:864–874

    Article  Google Scholar 

  • Smerdon BD, Gardner WP, Harrington GA, Tickell SJ (2012) Identifying the contribution of regional groundwater to the baseflow of a tropical river (Daly River, Australia). J Hydrol 464:107–115

    Article  Google Scholar 

  • Soulsby C, Tetzlaff D, Van den Bedem N, Malcolm I, Bacon P, Youngson A (2007) Inferring groundwater influences on surface water in montane catchments from hydrochemical surveys of springs and streamwaters. J Hydrol 333:199–213

    Article  Google Scholar 

  • Tice K, Graham R, Wood H (1996) Transformations of 2:1 phyllosilicates in 41-year-old soils under oak and pine. Geoderma 70:49–62

    Article  Google Scholar 

  • Turner S, Foden J, Sandiford M, Bruce D (1993) Sm-Nd isotopic evidence for the provenance of sediments from the Adelaide Fold Belt and southeastern Australia with implications for episodic crustal addition. Geochim Cosmochim Acta 57:1837–1856

    Article  Google Scholar 

  • Tweed SO, Weaver TR, Cartwright I, Schaefer B (2006) Behavior of rare earth elements in groundwater during flow and mixing in fractured rock aquifers: an example from the Dandenong Ranges, Southeast Australia. Chem Geol 234:291–307

    Article  Google Scholar 

  • Werner AD, Wood M, Simmons C, Lockington DA (2008) Salinograph trends as indicators of the recession characteristics of stream components. Hydrol Process 22:3020–3028

    Article  Google Scholar 

  • Wilson JL, Guan H (2004) Mountain-block hydrology and mountain-front recharge, groundwater recharge in a desert environment. In: Hogan JF, Phillips FM (eds) The southwestern United States. American Geophysical Union, Washington, DC

  • Wolin JA, Stone JR (1999) Diatoms as indicators of water-level change in freshwater lakes. In: Stoermer E, Smol J (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, UK, pp 183–202

    Chapter  Google Scholar 

  • Wood C, Cook PG, Harrington GA, Meredith K, Kipfer R (2014) Factors affecting carbon-14 activity of unsaturated zone CO2 and implications for groundwater dating. J Hydrol 519:465–475

    Article  Google Scholar 

  • Wood WW (1999) Use and misuse of the chloride-mass balance method in estimating ground water recharge. Ground Water 37:2–5

    Article  Google Scholar 

  • Zhang L, Dawes W, Walker G (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res 37:701–708

    Article  Google Scholar 

  • Zhang L, Potter N, Hickel K, Zhang Y, Shao Q (2008) Water balance modeling over variable time scales based on the Budyko framework: model development and testing. J Hydrol 360:117–131

    Article  Google Scholar 

Download references

Acknowledgements

The manuscript was greatly improved by the comments of two anonymous reviewers.

Funding

This research was funded by Flinders University Program Grant (2006), ANISE Grant no. 14/528, 2015; and ANSTO Portal 10725, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick A. Bestland.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, T.T., Bestland, E.A., Wallis, I. et al. Catchment-scale groundwater-flow and recharge paradox revealed from base flow analysis during the Australian Millennium Drought (Mt Lofty Ranges, South Australia). Hydrogeol J 29, 963–983 (2021). https://doi.org/10.1007/s10040-020-02281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02281-0

Keywords

Navigation