Skip to main content
Log in

A groundwater salinity hotspot and its connection to an intermittent stream identified by environmental tracers (Mt Lofty Ranges, South Australia)

Un hotspot de salinité des eaux souterraines et sa connexion à un cours d’eau intermittent identifié par les traceurs environnementaux (Mt Lofty Ranges, Australie du Sud)

Un hotspot de salinidad de agua subterránea y su conexión a una corriente intermitente identificada por trazadores ambientales (Mt Lofty Ranges, Australia del Sur)

(澳大利亚Lofty Ranges山脉)依靠环境示踪剂确认地下水含盐度热点区及其与间歇河的联系

Ponto crítico de salinidade de águas subterrâneas a sua conexão com o fluxo intermitente identificado por traçadores ambientais (Cadeias do Monte Lofty, Sul da Austrália)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

High and variable levels of salinity were investigated in an intermittent stream in a high-rainfall area (∼800 mm/year) of the Mt. Lofty Ranges of South Australia. The groundwater system was found to have a local, upslope saline lens, referred to here as a groundwater salinity ‘hotspot’. Environmental tracer analyses (δ18O, δ2H, 87/86Sr, and major elements) of water from the intermittent stream, a nearby permanent stream, shallow and deep groundwater, and soil-water/runoff demonstrate seasonal groundwater input of very saline composition into the intermittent stream. This input results in large salinity increases of the stream water because the winter wet-season stream flow decreases during spring in this Mediterranean climate. Furthermore, strontium and water isotope analyses demonstrate: (1) the upslope-saline-groundwater zone (hotspot) mixes with the dominant groundwater system, (2) the intermittent-stream water is a mixture of soil-water/runoff and the upslope saline groundwater, and (3) the upslope-saline-groundwater zone results from the flushing of unsaturated-zone salts from the thick clayey regolith and soil which overlie the metamorphosed shale bedrock. The preferred theory on the origin of the upslope-saline-groundwater hotspot is land clearing of native deep-rooted woodland, followed by flushing of accumulated salts from the unsaturated zone due to increased recharge. This cause of elevated groundwater and surface-water salinity, if correct, could be widespread in Mt. Lofty Ranges areas, as well as other climatically and geologically similar areas with comparable hydrogeologic conditions.

Résumé

Des niveaux élevés et variables de salinité ont été étudiés dans un cours d’eau intermittent dans une zone à forte pluviométrie (∼800 mm/an) des chaînes montagneuses du Mont Lofty dans le Sud de l’Australie. On a constaté que le système des eaux souterraines possédait une lentille saline locale, inclinée vers le haut, appelée ici « hotspot » de salinité des eaux souterraines. Des analyses des traceurs environnementaux (δ18O, δ2H, 87/86Sr, et ions majeurs) de l’eau du cours d’eau intermittent, d’un cours d’eau permanent situé à proximité, des eaux souterraines de surface et profondes, et de l’eau de sol/eau de ruissellement sur le sol mettent en évidence un apport saisonnier des eaux souterraines d’une composition très saline au cours d’eau intermittent. Cet apport a pour conséquence d’importantes augmentations de la salinité dans le cours d’eau parce que le flux hivernal de saison humide du cours d’eau diminue au printemps dans ce climat méditerranéen. En outre, les analyses d’isotopes du strontium et de l’eau démontrent: (1) la zone d’eau souterraine saline ascendante (hotspot) se mélange au système d’eau souterraine dominant, (2) l’eau du cours d’eau intermittent est. un mélange d’eau de sol/ruissellement et d’eau souterraine salée ascendante, et (3) la zone ascendante d’eau souterraine salée résulte du lessivage des sels de la zone non saturée du régolithe argileux épais et du sol qui recouvrent le substrat rocheux de schiste métamorphique. La théorie préférée concernant l’origine de ce hotspot d’eau souterraine saline ascendante est. le défrichage des terrains indigènes boisés à racines profondes, suivi du lessivage des sels accumulés dans la zone non saturée en raison d’une recharge accrue. La cause de l’élévation des eaux souterraines et de la salinité des eaux de surface, si elle est. correcte, pourrait s’étendre dans les zones du Mont Lofty, ainsi que dans d’autres régions climatiques et géologiques similaires avec des conditions hydrogéologiques comparables.

Resumen

Se investigaron niveles altos y variables de salinidad en un arroyo intermitente en una zona de alta precipitación (∼ 800 mm/año) de los Mt. Lofty Ranges en Australia del Sur. Se encontró que el sistema de agua subterránea tenía una lente salina local, ascendente, a la que se hace referencia aquí como un “hotspot” de salinidad del agua subterránea. Los análisis de trazadores ambientales (δ18O, δ2H, 87/86Sr, y elementos mayoritarios) del agua de la corriente intermitente, una corriente permanente cercana, aguas subterráneas someras y profundas y el agua del suelo/escurrimiento demuestran la entrada estacional de agua salada en la corriente intermitente. Esta entrada da lugar a grandes aumentos en la salinidad del agua de la corriente porque el flujo de la corriente en la estación húmeda del invierno disminuye durante la primavera en este clima mediterráneo. Además, los análisis de isótopos de estroncio y agua demuestran: (1) la zona de agua subterránea salina (hotspot) se mezcla con el sistema de agua subterránea dominante, (2) el agua de flujo intermitente es una mezcla de agua de suelo/escurrimiento y la solución salina ascendente, y (3) la zona de agua subterránea salina ascendente resulta de la descarga de las sales de la zona no saturada del espeso regolito arcilloso y del suelo que se superponen a la roca base de esquistos metamórficos. La teoría preferida sobre el origen en la zona húmeda de agua subterránea salina ascendente es el desmonte de bosques autóctonos de raíces profundas, seguido por el lavado de sales acumuladas de la zona no saturada debido al aumento de la recarga. Esta causa de elevación del agua subterránea y la salinidad del agua superficial, si es correcta, podría extenderse a las áreas del Mt. Lofty Ranges, así como a otras áreas climáticamente y geológicamente similares con condiciones hidrogeológicas comparables.

摘要

调查了澳大利亚Lofty Ranges山脉强降雨区(800 mm/year)一个间歇河的很高的并且不断变化的含盐度水平。发现地下水系统具有局部的、向上的含盐透镜体,这里称为地下水含盐度“热点区”。间歇河水、附近的永久河水、浅层和深层地下水以及土壤水/径流的环境示踪剂分析((δ18O、 δ2H、 87/86Sr及主要元素)证明,有非常咸的组分的地下水进入间歇河。由于春季期间在地中海气候条件下,冬季雨季河流量降低,地下水流入间歇河导致河水的含盐量大幅增加。此外,锶和水同位素分析显示:(1)向上趋势的地下水咸水带(热点区)与占主导的地下水系统混合;(2)间歇河水是土壤水/径流和盐度向上的地下水的混合水;(3)盐度向上的地下咸水带是覆盖变质页岩基岩的厚层黏土风化层中非饱和带盐类的冲刷造成的。盐度向上的地下咸水热点区成因的首选理论就是本地根深蒂固的林地开荒,其次就是由于补给增加致使非饱和带积累的盐分受到冲刷。如果地下水和地表水的盐度增加的这个原因正确的话,那就可能在Lofty Ranges山脉地区以及具有可比较的水文地质条件的气候上和地质上类似的区域非常普遍。

Resumo

Níveis altos e variáveis de salinidade foram investigados em um fluxo intermitente em área com muita pluviosidade (∼800 mm/ano) nas Cadeias do Monte Lofty no Sul da Austrália. Foi descoberto que o sistema de águas subterrâneas apresentava no gradiente superior do declive, lentes salinas, referido aqui como ponto crítico salinidade das águas subterrâneas. Análises de traçadores ambientais de água (δ18O, δ2H, 87/86Sr, e elementos maiores) do fluxo intermitente, do fluxo permanente próximo, águas subterrâneas rasas e profundas, e escoamento de água/solo demonstram entradas de águas subterrâneas de composição muito salina no fluxo intermitente. Essa entrada resulta em grandes aumentos de salinidade na água do fluxo porque o fluxo da estação-úmida do inverno diminui durante a primavera no clima mediterrâneo. Além disso, as análises de água e estrôncio demonstram: (1) a zona de águas subterrâneas na parte superior do declive (ponto crítico) se mistura com o sistema de águas subterrâneas dominante, (2) a água do fluxo intermitente é uma mistura do escoamento de água/solo e das águas subterrâneas salinas da parte superior do declive, e (3) a zona das águas subterrâneas salinas na parte superior do declive resultam das descargas de sal da zona não-saturada de um regolito argiloso grosso e solo que sobrepõe uma rocha base de xisto metamorfoseado. A teoria preferida para a origem do ponto crítico de águas subterrâneas salina na parte superior do declive é uma clareira de floresta nativa de raízes longas, seguida de descarga de sais acumulados da zona não-saturada pelo aumento da recarga. Essa causa de águas subterrâneas e águas superficiais de elevada salinidade, se correta, pode ser disseminada nas áreas das Cadeias do Monte Lofty, assim como em outras áreas similares geologicamente e em clima com condições hidrogeológicas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • ACME Labs (2012) ACME analytical laboratories: pricing brochure. acmelab.com/pdfs/Acme_Price_Brochure.pdf. Accessed 12 July 2012

  • Allison G, Hughes M (1983) The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. J Hydrol 60(1–4):157–173

    Article  Google Scholar 

  • Allison G, Cook P, Barnett S, Walker G, Jolly I, Hughes M (1990) Land clearance and river salinisation in the western Murray Basin, Australia. J Hydrol 119(1–4):1–20

    Article  Google Scholar 

  • Anderson TA (2013) Origin of high salinity water in an ephemeral stream, Scott Creek, Mount Lofty Ranges. Honours Thesis, Flinders University, Adelaide, South Australia

  • Banks EW (2011) Hydrogeological and hydroclimatic controls on surface water-groundwater interactions. PhD Thesis, Flinders University, Adelaide, South Australia

  • Banks EW, Wilson T, Green G, Love A (2007) Groundwater recharge investigations in the Eastern Mount Lofty Ranges, South Australia. DWLBC Rep 20, Dept. of Water, Land and Biodiversity Conservation, Adelaide, South Australia, 105 pp

  • Banks EW, Simmons C, Cranswick R, Love A, Werner A, Bestland E, Wood M, Wilson T (2009) Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: a conceptual model (Australia). J Hydrogeol 17(8):1969–1989

    Article  Google Scholar 

  • Barnes C, Allison G (1988) Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. J Hydrol 100(1):143–176

    Article  Google Scholar 

  • Bennetts DA, Webb JA, McCaskill M, Zollinger R (2007) Dryland salinity processes within the discharge zone of a local groundwater system, southeastern Australia. Hydrogeol J 15(6):1197–1210

    Article  Google Scholar 

  • Bestland EA, Stainer G (2013) Down-slope change in soil hydrogeochemistry due to seasonal water table rise: implications for groundwater weathering. Catena 111:122–131

    Article  Google Scholar 

  • Bestland EA, Milgate S, Chittleborough D, Vanleeuwen J, Pichler M, Soloninka L (2009) The significance and lag-time of deep through flow: an example from a small, ephemeral catchment with contrasting soil types in the Adelaide Hills, South Australia. Hydrol Earth Syst Sci 13:1–14

    Article  Google Scholar 

  • Bestland EA, Liccioli C, Soloninka L, Chittleborough DJ, Fink D (2016) Catchment-scale denudation and chemical erosion rates determined from 10 be and mass balance geochemistry (Mt. Lofty Ranges of South Australia). Geomorphology 270:40–54

    Article  Google Scholar 

  • Bestland E, George A, Green G, Olifent V, Mackay D, Whalen M (2017) Groundwater dependent pools in seasonal and permanent streams in the Clare Valley of South Australia. J Hydrol Reg Stud 9:216–235

    Article  Google Scholar 

  • BOM (2007) Climate statistics for Australian sites Bureau of Meteorology. http://www.bom.gov.au/climate/averages/tables/ca_vic_nos.shtml. Accessed 22 September 2016

  • Capo RC, Stewart BW, Chadwick OA (1998) Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82(1):197–225

    Article  Google Scholar 

  • Cartwright I, Weaver TR, Fulton S, Nichol C, Reid M, Cheng X (2004) Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Appl Geochem 19(8):233–1254

    Article  Google Scholar 

  • Cartwright I, Gilfedder B, Hofmann H (2013) Chloride imbalance in a catchment undergoing hydrological change: Upper Barwon River, southeast Australia. Appl Geochem 31:187–198

    Article  Google Scholar 

  • Chittleborough D, Smettem K, Cotsaris E, Leaney F (1992) Seasonal changes in pathways of dissolved organic carbon through a hillslope soil (Xeralf) with contrasting texture. Soil Res 30(4):465–476

    Article  Google Scholar 

  • Cranswick R (2005) Hillslope scale geological controls on surface water–groundwater interaction: evidence of active recharge to a fractured rock aquifer. Honours Thesis, Flinders University, Adelaide, Australia

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468

    Article  Google Scholar 

  • Drexel JF, Preiss WV, Parker A (1993) The geology of South Australia: the Precambrian. Mines and Energy, South Australia, Geological Survey of South Australia, Adelaide, Australia, 54 pp

  • Earl G (1988) Stream salinities and salt loads in the Goulburn and Broken River catchments. Rural Water Commission of Victoria, Maffra, Australia

  • Evans W (1994) Regional salt balances and implications for dryland salinity management. Water Down Under 94: Groundwater papers; Preprints of papers, Engineers Australia. Barton, Australia, pp 349–354

  • Forstel H (1982) 18O/16O ratio of water in plants and in their environment. In: Schmidt H, Forstel H, Heizinger K (eds) Stable isotopes. Elsevier, Amsterdam, pp 503–509

    Google Scholar 

  • George R, McFarlane D, Nulsen B (1997) Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeol J 5(1):6–21

    Article  Google Scholar 

  • Greeff G (1994) Ground-water contribution to stream salinity in a shale catchment, RSA. Ground Water 32(1):63–70

    Article  Google Scholar 

  • Green G, Bestland EA, Walker GS (2004) Distinguishing sources of base cations in irrigated and natural soils: evidence from strontium isotopes. Biogeochemistry 68:199-225

  • Green G, Stewart S (2008) Interactions between groundwater and surface water systems in the Eastern Mount Lofty Ranges. Dept of Water, Land and Biodiversity Conservation, Adelaide, South Australia

  • Guan H, Simmons CT, Love AJ (2009) Orographic controls on rain water isotope distribution in the Mount Lofty Ranges of South Australia. J Hydrol 374(3):255–264

    Article  Google Scholar 

  • Guan H, Zhang X, Skrzypek G, Sun Z, Xu X (2013) Deuterium excess variations of rainfall events in a coastal area of South Australia and its relationship with synoptic weather systems and atmospheric moisture sources. J Geophys Res Atmos 118(2):1123–1138

    Article  Google Scholar 

  • Harrington G (2004a) Hydrogeological Investigation of the Mount Lofty Ranges, Progress Report 3: borehole water and formation characteristics at the Scott Bottom research site, Scott Creek Catchment. Report DWLBC 2004/03, Dept. of Water, Land and Biodiversity Conservation, Adelaide, South Australia

  • Harrington G (2004b) Hydrogeological Investigation of the Mount Lofty Ranges, Progress Report 4: groundwater–surface water interactions in the Scott Creek, Marne River and Tookayerta Creek catchments. Report DWLBC 2004/03, Dept. of Water, Land and Biodiversity Conservation, Adelaide, South Australia

  • Harrington GA, Herczeg AL (2003) The importance of silicate weathering of a sedimentary aquifer in arid central Australia indicated by very high 87Sr/86Sr ratios. Chem Geol 199:281–292

    Article  Google Scholar 

  • Hughes CE, Crawford J (2012) A new precipitation weighted method for determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data. J Hydrol 464:344–351

    Article  Google Scholar 

  • James-Smith J, Harrington G (2002) Hydrogeological Investigation of the Mount Lofty Ranges, Progress Report 1: hydrogeology and drilling phase 1 for Scott Creek Catchment, Dept. for Water, Land and Biodiversity Conservation, Adelaide, South Australia

  • Jolly I, Williamson D, Gilfedder M, Walker G, Morton R, Robinson G, Jones H, Zhang L, Dowling T, Dyce P (2001) Historical stream salinity trends and catchment salt balances in the Murray-Darling Basin, Australia. Mar Freshw Res 52(1):53–63

    Article  Google Scholar 

  • Kayaalp A (2001) Application of rainfall chemistry and isotope data to hydro-meteorological modelling. PhD Thesis, Flinders University, Adelaide, South Australia

  • Kendall C, McDonnell J (1998) Isotope tracers in catchment hydrology. Elsevier, Amsterdam

    Google Scholar 

  • Kretchmer P (2007) Determining the contribution of groundwater to stream flow in an upland catchment using a combined salinity mixing model and modified curve number approach. Honours Thesis, Flinders University, Adelaide, South Australia

  • Lamontagne S, Leaney FW, Herczeg AL (2005) Groundwater–surface water interactions in a large semi-arid floodplain: implications for salinity management. Hydrol Process 19(16):3063–3080

    Article  Google Scholar 

  • Love A, Cook P, Harrington G, Simmons C (2002) Groundwater flow in the Clare Valley. Report DWR02 3, Dept. for Water Resources, South Australia, 43 pp

  • Meredith K, Hollins S, Hughes C, Cendón D, Stone D (2013) The influence of groundwater/surface water exchange on stable water isotopic signatures along the Darling River, NSW, Australia. In: Ribeiro L, Stigter TY, Chambel A, Conesso de Melo M, Medeiros A (eds) Groundwater and ecosystems, vol 18. CRC, Boca Raton, FL, pp 57–68

    Chapter  Google Scholar 

  • Milgate SA (2007) Hydrochemical investigation of flow pathways through quartz-sand and duplex soils during a storm event: Mackreath Creek, Mount Lofty Ranges. Honours Thesis, Flinders University, Adelaide, South Australia, Adelaide, South Australia

  • Pichler M (2009) Characterization of spatial and seasonal changes of dissolved organic carbon in the soils of a South Australian Catchment, PhD Thesis, Flinders University, Adelaide, South Australia

  • Poulsen DL, Simmons CT, Le Galle La Salle C, Cox JW (2006) Assessing catchment-scale spatial and temporal patterns of groundwater and stream salinity. Hydrogeol J 14(7):1339–1359. doi:10.1007/s10040-006-0065-9

    Article  Google Scholar 

  • Preiss WV (1987) The Adelaide Geosyncline: Late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. Dept. of Mines and Energy, Adelaide, South Australia

  • Raiber M, Webb JA, Bennetts DA (2009) Strontium isotopes as tracers to delineate aquifer interactions and the influence of rainfall in the basalt plains of southeastern Australia. J Hydrol 367:188–199

    Article  Google Scholar 

  • Ranville JF, Chittleborough DJ, Beckett R (2005) Particle-size and element distributions of soil colloids: implications for colloid transport. Soil Sci Soc Am J 69:1173–1184

    Article  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57(5):1017–1023

    Article  Google Scholar 

  • Salama RB, Otto CJ, Fitzpatrick RW (1999) Contributions of groundwater conditions to soil and water salinization. Hydrogeol J 7(1):46–64

    Article  Google Scholar 

  • Schofield N (1992) Tree planting for dryland salinity control in Australia. Agrofor Syst 20(1–2):1–23

    Article  Google Scholar 

  • Stevens DP, Cox JW, Chittleborough DJ (1999) Pathways of phosphorous, nitrogen, and carbon movement over and through texturally differentiated soils, South Australia. Aust J Soil Res 37:679–693

    Google Scholar 

  • Stewart BW, Capo RC, Chadwick OA (1998) Quantitative strontium isotope models for weathering, pedogenesis and biogeochemical cycling. Geoderma 82(1):173–195

    Article  Google Scholar 

  • Stewart S (2005) Clare prescribed water resources area groundwater monitoring status report 2005. DWLBC 2005/18, Government of South Australia, Adelaide, 43p

  • Taylor JK, Thompson B, Shepherd R (1974) The soils and geology of the Adelaide area. Geological Survey of South Australia, Adelaide, South Australia

  • Turner J, Arad A, Johnston C (1987) Environmental isotope hydrology of salinized experimental catchments. J Hydrol 94(1):89–107

    Article  Google Scholar 

  • UC Davis (2012) Stable Isotopes Facility homepage. University of California, Davis, CA. http://stableisotopefacility.ucdavis.edu/index.html. Accessed 12 Februaury 2012

  • Walker GR, Gilfedder M, Williams J (1999) Effectiveness of current farming systems in the control of dryland salinity. CSIRO Land and Water, Clayton, South Australia

  • Zimmerman U, Ehhalt D, Munnich K (1967) Soil water movement and evapotranspiration: changes in the isotopic composition of water. From ‘Isotopes in Hydrology’ conference, IAEA, Vienna

Download references

Acknowledgements

This project was funded by a Flinders University Program Grant (2005). Access to South Australian Water Corporation property is gratefully acknowledged. Field assistance by Olanrewaju Abiodun and Robbie Andrews was helpful. Editorial assistance by Kate Osborne is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick A. Bestland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, T.A., Bestland, E.A., Soloninka, L. et al. A groundwater salinity hotspot and its connection to an intermittent stream identified by environmental tracers (Mt Lofty Ranges, South Australia). Hydrogeol J 25, 2435–2451 (2017). https://doi.org/10.1007/s10040-017-1637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1637-6

Keywords

Navigation