Skip to main content

Advertisement

Log in

Evaluation of the vulnerability of a leaky aquifer considering the retardation effect of an aquitard for specific pollutants: case study in the Tongzhou Plain, China

Evaluation de la vulnérabilité d’un aquifère semi-captif compte tenu de l’effet de retard de l’aquitard pour des polluants spécifiques: étude de cas dans la Plaine de Tongzhou (Chine)

Evaluación de la vulnerabilidad de un acuífero semiconfinado considerando el efecto de retardo de un acuitardo para contaminantes específicos: estudio de Caso en la llanura de Tongzhou, China

考虑隔水层对特定污染物阻滞效果的越流含水层脆弱性评估:以中国通州平原为例

Avaliação da vulnerabilidade de um aquífero semiconfinado considerando o efeito de retardo de um aquitardo para poluentes específicos: estudo de Caso na planície de Tongzhou, China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The effect of an aquitard above a leaky aquifer on retarding characteristic pollutants is very important for evaluating groundwater vulnerability. A case study is presented of the leaky aquifer in the Tongzhou Plain of China. On the basis of analyses of the environmental and hydrogeological characteristics of the study area, an indicator system to evaluate the leaky aquifer’s vulnerability was constructed, comprising eight indicators: the depth to groundwater (D), the net recharge (R), the impact of the vadose zone (I), the hydraulic conductivity of the phreatic aquifer (C), the pollution load (P), the phreatic water quality (Q), the ability of the aquitard to retard NH4+ (A), and the ability of the aquitard to retard NO3 (N). The retardation capacity of the aquitard for the characteristic pollutants in the study area (ammonia nitrogen and nitrate nitrogen) was obtained by numerical modelling with a HYDRUS simulator. The results show that the retarding effect of the aquitard on nitrogen pollutants and the hydraulic conductivity of the phreatic aquifer have significant effects on the vulnerability of leaky aquifers, and that other factors such as groundwater depth and pollutant load, have relatively limited effects. The research can provide a reference methodology for evaluating the vulnerability of porous leaky aquifers in alluvial plain areas.

Résumé

L’incidence d’un aquitard, situé au-dessus d’un aquifère semi-captif, sur le retard de certains polluants caractéristiques est très important pour évaluer la vulnérabilité des eaux souterraines. Une étude de cas est présentée sur l’aquifère semi-captif de la plaine de Tongzhou en Chine. Sur la base de l’analyse des caractéristiques environnementales et hydrogéologiques de la zone d’étude, un système d’indicateurs destinés à évaluer la vulnérabilité de l’aquifère semi-captif a été élaboré; il comprend huit indicateurs: la profondeur des eaux souterraines (D), la recharge nette (R), l’impact de la zone non saturée (I), la conductivité hydraulique de l’aquifère superficiel (C), la charge polluante (P), la qualité de l’eau de l’aquifère superficiel (Q), la capacité de l’aquitard à retarder NH4+ (A), et la capacité de la couche semi-imperméable à retarder NO3 (N). La capacité de l’aquitard à retarder les polluants caractéristiques de la zone d’étude (azote ammoniacal et azote nitreux) a été obtenue par modélisation numérique à l’aide du code HYDRUS. Les résultats montrent que l’effet retardateur de l’aquitard sur les polluants azotés et la conductivité hydraulique de l’aquifère superficiel ont des impacts significatifs sur la vulnérabilité de l’aquifère semi-captif, et que d’autres facteurs, comme la profondeur des eaux souterraines et la charge polluante, ont une incidence relativement limitée. Cette recherche fournit une méthodologie de référence pour évaluer la vulnérabilité des aquifères poreux semi-captifs dans les zones de plaine alluviale.

Resumen

El efecto de un acuitardo sobre un acuífero semiconfinado en el retraso de contaminantes característicos es muy importante para evaluar la vulnerabilidad de las aguas subterráneas. Se presenta un estudio de caso del acuífero semiconfinado en la llanura de Tongzhou, China. Sobre la base de los análisis de las características ambientales e hidrogeológicas del área de estudio, se construyó un sistema de indicadores para evaluar la vulnerabilidad del acuífero semiconfinado, que comprende ocho indicadores: la profundidad del agua subterránea (D), la recarga neta (R), el impacto de la zona no saturada (I), la conductividad hidráulica del acuífero freático (C), la carga contaminante (P), la calidad del agua freática (Q), la capacidad del acuitardo para retardar NH4+ (A) y la capacidad del acuitardo para retardar NO3 (N). La capacidad de retardo del acuitardo para los contaminantes característicos de la zona de estudio (nitrógeno amoniacal y nitrógeno nítrico) se obtuvo mediante modelización numérica con un simulador HYDRUS. Los resultados muestran que el efecto retardante del acuitardo sobre los contaminantes de nitrógeno y la conductividad hidráulica del acuífero freático tienen efectos significativos sobre la vulnerabilidad de los acuíferos semiconfinados, y que otros factores, como la profundidad del agua subterránea y la carga contaminante, tienen efectos relativamente limitados. La investigación puede proporcionar una metodología de referencia para evaluar la vulnerabilidad de los acuíferos semiconfinados en áreas de llanuras aluviales.

摘要

位于越流含水层之上的隔水层对特征性污染物阻滞作用对于评估地下水的脆弱性非常重要。本研究以中国通州平原越流含水层为例。在对研究区环境和水文地质特征分析的基础上,构建了评估越流含水层脆弱性的指标体系,其中包括八个指标:地下水深度(D),净补给量(R),包气带影响(I),潜水含水层的渗透系数(C),污染负荷(P),潜水水质(Q),隔水层对NH4+的阻滞能力(A)以及对NO3的阻滞能力(N)。利用HYDRUS模拟器进行数值建模,获得了研究区隔水层对特性污染物(氨氮和硝酸盐氮)的阻滞能力。结果表明,隔水层对氮污染物的阻滞作用和潜水含水层的渗透系数对越流含水层的脆弱性有着显著影响,而诸如地下水深度和污染物负荷等其他因素的影响相对有限。该研究可为评价冲积平原地区孔隙越流含水层的脆弱性提供参考方法。

Resumo

O efeito de um aquitardo acima de um aquífero semiconfinado no retardamento de poluentes característicos é muito importante para avaliar a vulnerabilidade das águas subterrâneas. É apresentado um estudo de caso do aquífero semiconfinado na planície de Tongzhou, na China. Com base nas análises das características ambientais e hidrogeológicas da área de estudo, foi construído um sistema de indicadores para avaliar a vulnerabilidade do aquífero semiconfinado, composto por oito indicadores: a profundidade das águas subterrâneas (D), a recarga líquida (R), o impacto da zona vadosa (I), a condutividade hidráulica do aquífero freático (C), a carga de poluição (P), a qualidade da água freática (Q), a capacidade do aquitardo de retardar NH4+ (A) e a capacidade do aquitardo retardar NO3 (N). A capacidade de retardo do aquitardo para os poluentes característicos da área de estudo (nitrogênio amoniacal e nitrogênio nitrato) foi obtida por modelagem numérica com simulador HYDRUS. Os resultados mostram que o efeito retardador do aquitardo nos poluentes nitrogenados e a condutividade hidráulica do aquífero freático têm efeitos significativos na vulnerabilidade dos aquíferos semiconfinados, e que outros fatores, como profundidade da água subterrânea e carga de poluentes, têm efeitos relativamente limitados. A pesquisa pode fornecer uma metodologia de referência para avaliar a vulnerabilidade de aquíferos semiconfinados poroso em áreas planas aluviais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Al-Abadi AM, Al-Shamma’a AM, Aljabbari MH (2014) A GIS-based DRASTIC model for assessing intrinsic groundwater vulnerability in northeastern Missan governorate, southern Iraq. Appl Water Sci 7:89–101. https://doi.org/10.1007/s13201-014-0221-7

    Article  Google Scholar 

  • Al-Hanbali A, Kondoh A (2008) Groundwater vulnerability assessment and evaluation of human activity impact (HAI) within the Dead Sea groundwater basin, Jordan. Hydrogeol J 16:499–510

    Article  Google Scholar 

  • Antonakos AK, Lambrakis NJ (2007) Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece. J Hydrol 333:288–304

    Article  Google Scholar 

  • Babiker IS, Mohamed MA, Hiyama T, Kato K (2005) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu prefecture, central Japan. Sci Total Environ 345:127–140. https://doi.org/10.1016/j.scitotenv.2004.11.005

    Article  Google Scholar 

  • Belousova AP (2003) The basic principles and recommendations for the assessment and mapping of the degree of groundwater protection against pollution. Water Resour 30:613–623

    Article  Google Scholar 

  • Ben-hua L, Hong-han C, Ming-zhu L (2010) Intrinsic vulnerability assessment of the confined aquifer on Yinchuan plain. Int. Conf. on Challenges in Environmental Science and Computer Engineering (CESCE 2010), Wuhan, China, 2010, pp 250–253. https://doi.org/10.1109/cesce.2010.145

  • Cai X-M, Luan Y-B, Guo G-X, Liang Y-N (2009) 3D Quaternary geological structure of Beijing plain. Geol Chin 36(5):1021–1029

    Google Scholar 

  • Carreras X, Fraile J, Garrido T, Cardona C (2015) Groundwater vulnerability mapping assessment using overlay and the DRASTIC method in Catalonia. In: Experiences from ground, coastal and transitional water quality monitoring. The Handbook of Environmental Chemistry book series, vol 43, Springer, Heidelberg, Germany, pp 117–134. https://doi.org/10.1007/698_2015_441

  • Chuang PT (2001) Combining the analytic hierarchy process and quality function deployment for a location decision from a requirement perspective. Int J Adv Manuf Technol 18:842–849

    Article  Google Scholar 

  • Denny SC, Allen DM, Journeay JM (2007) DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol J 15:483

    Article  Google Scholar 

  • Dixon B (2005a) Groundwater vulnerability mapping: a GIS and fuzzy rule based integrated tool. Appl Geogr 25:327–347

    Article  Google Scholar 

  • Dixon B (2005b) Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. J Hydrol 309:17–38. https://doi.org/10.1016/j.jhydrol.2004.11.010

    Article  Google Scholar 

  • Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39:165–176

    Article  Google Scholar 

  • Ducci D (2007) Intrinsic vulnerability of the Alburni karst system (southern Italy). Geol Soc London Spec Publ 279:137–151

    Article  Google Scholar 

  • Fijani E, Nadiri AA, Asghari Moghaddam A, Tsai FTC, Dixon B (2013) Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran. J Hydrol 503:89–100. https://doi.org/10.1016/j.jhydrol.2013.08.038

    Article  Google Scholar 

  • Fritch TG, McKnight CL, Yelderman JC Jr, Arnold JG (2000) An aquifer vulnerability assessment of the Paluxy aquifer, central Texas, USA, using GIS and a modified DRASTIC approach. Environ Manag 25:337–345

    Article  Google Scholar 

  • Gogu RC, Dassargues A (2000) Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geol 39:549–559

    Article  Google Scholar 

  • Guo G-X, Ju Y-W, Zhai H, Xu L, Shen Y-Y, Ji Y-Q (2014) Assessment of groundwater quality of different aquifers in Tongzhou area in Beijing plain and its chemical characteristics analysis (in Chinese). Environ Sci 6:2114–2119

    Google Scholar 

  • Guo Q (2012) Prediction and influence analysis of land subsidence for East Main Canal (in Chinese). China University of Geosciences, Beijing

  • Hamza SM, Ahsan A, Imteaz MA, Rahman A, Mohammad TA, Ghazali AH (2014) Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: a review. Environ Earth Sci 73:3063–3076. https://doi.org/10.1007/s12665-014-3601-2

    Article  Google Scholar 

  • Javadi S, Kavehkar N, Mohammadi K, Khodadadi A, Kahawita R (2011) Calibrating DRASTIC using field measurements, sensitivity analysis and statistical methods to assess groundwater vulnerability. Water Int 36:719–732

    Article  Google Scholar 

  • Johansson PO, Scharp C, Alveteg T, Choza (2010) A framework for ground water protection: the Managua ground water system as an example. Groundwater 37:204–213

    Article  Google Scholar 

  • Kim YJ, Hamm SY (1999) Assessment of the potential for groundwater contamination using the DRASTIC/EGIS technique, Cheongju area, South Korea. Hydrogeol J 7:227–235

    Article  Google Scholar 

  • Kirkham AM, Smith CJ, Doyle RB, Brown PH (2019) Inverse modelling for predicting both water and nitrate movement in a structured-clay soil (red Ferrosol). J Life Environ Sci 6:e6002. https://doi.org/10.7717/peerj.6002

    Article  Google Scholar 

  • Lake IR, Lovett AA, Hiscock KM, Betson M, Foley A, Sunnenberg G, Evers S, Fletcher S (2003) Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. J Environ Manag 68:315–328

    Article  Google Scholar 

  • Lan T-S, Miao J-J, Bai Y-N, Ping S-F, Wang F-G, Cao Y-Q (2018) Hydrochemical characteristics and formation analysis of phreatic water in Tongzhou District of Beijing (in Chinese). Water Saving Irrig 12:70–76

  • Margat J (1968) Vulnerabilite des nappes d’eau souterraine a la pollution [Groundwater vulnerability to contamination]. Bases de al cartographie, (Doc.) 68 SGC 198 HYD, BRGM, Orleans, France

    Google Scholar 

  • Marín AI (2012) Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain). Environ Earth Sci 65:2407–2421

    Article  Google Scholar 

  • Martinezsantos P, Llamas M, Martinezalfaro P (2008) Vulnerability assessment of groundwater resources: a modelling-based approach to the Mancha occidental aquifer, Spain. Environ Model Softw 23:1145–1162. https://doi.org/10.1016/j.envsoft.2007.12.003

    Article  Google Scholar 

  • Mclay CDA, Dragten R, Sparling G, Selvarajah N (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut 115:191–204

    Article  Google Scholar 

  • Neukum C, Hötzl H (2007) Standardization of vulnerability maps. Environ Geol 51:689–694

    Article  Google Scholar 

  • National Research Council (US) (1993) Groundwater vulnerability assessment: predicting relative contamination potential under conditions of uncertainty. Committee on techniques for assessing ground water vulnerability. National Research Council, National Academy Press, Washington, DC, 204 pp

    Google Scholar 

  • Nolan BT (2010) Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States. Ground Water 39:290–299

    Article  Google Scholar 

  • Neshat A, Pradhan B, Pirasteh S, Shafri HZM (2013) Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ Earth Sci 71:3119–3131. https://doi.org/10.1007/s12665-013-2690-7

    Article  Google Scholar 

  • Pacheco F, Fernandes ALS, Luis F (2013) The multivariate statistical structure of DRASTIC model. J Hydrol 476:442–459

    Article  Google Scholar 

  • Panagopoulos GP, Antonakos AK, Lambrakis NJ (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol J 14:894–911

    Article  Google Scholar 

  • Pathak DR, Hiratsuka A (2011) An integrated GIS based fuzzy pattern recognition model to compute groundwater vulnerability index for decision making. J Hydro Environ Res 5:63–77

    Article  Google Scholar 

  • Rupert MG (2001) Calibration of the DRASTIC ground water vulnerability mapping method. Groundwater 39:625–630

    Article  Google Scholar 

  • Şener Ş, Şener E, Nas B, Karagüzel R (2010) Combining AHP with GIS for landfill site selection: a case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste Manag 30:2037–2046

    Article  Google Scholar 

  • Šimůnek J, Šejna M, Saito H, Sakai M, Van Genuchten MT (2008) The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, Version 4.0, HYDRUS Software Series 3. Department of Environmental Sciences, University of California, Riverside, CA, 315 pp

  • Shukla S, Mostaghimi S, Shanholt VO, Collins MC, Ross BB (2010) A county-level assessment of ground water contamination by pesticides. Groundwater Monit Remed 20:104–119

    Article  Google Scholar 

  • Tesoriero AJ, Voss FD (2010) Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: implications for aquifer susceptibility and vulnerability. Ground Water 35:1029–1039

    Article  Google Scholar 

  • Vías JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14:912–925

    Article  Google Scholar 

  • Wen X, Wu J, Si J (2009) A GIS-based DRASTIC model for assessing shallow groundwater vulnerability in the Zhangye Basin, northwestern China. Environ Geol 57:1435–1442

    Article  Google Scholar 

  • Zhang A-J (2008) Groundwater in Beijing (in Chinese). China Dadi Publishing House, Beijing

  • Zuoshen Z (2005) Discussion on evaluation method of groundwater vulnerability (in Chinese). Earth Science Frontiers, pp 3–11

Download references

Funding

This work was supported by a geological survey project of the China Geological Survey (Nos. DD20160229, DD20190251, DD20190820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fugang Wang.

Appendix

Appendix

Quantitative evaluation of the capacity of the aquitard above the leaky aquifer to retard NH4+ and NO3

Simulation scheme

To investigate the capacity of the aquitard above the leaky aquifer to retard NH4+ and NO3 transport in the study area, a simulation scheme was constructed. The construction was on the basis of division of the hydrogeological units in the study area, combined with the strata structural characteristics and lithological characteristics obtained from borehole data, the dynamic characteristics of the shallow groundwater, the hydraulic gradient between the phreatic aquifer and the leaky aquifer, and the degree of pollution in different parts of the phreatic aquifer. The simulation schemes of migration of the characteristic pollution components NH4+ and NO3 through the phreatic aquifer-aquitard-leaky aquifer system were then constructed. A total of 15 simulation schemes were constructed, as shown in Table 4. The corresponding division of the hydrogeological units is shown in Fig. 4.

Table 4 The simulation schemes

Quantitative simulation of the retardation capacity of the aquitard on NH4+ and NO3

Hydrogeological conceptual model

The target strata of the model is the shallow aquifer group, including the phreatic aquifer, the aquitard and the leaky aquifer. Since the main purpose of the simulation is to analyse the retardation capacity of the aquitard on the pollutant components NH4+ and NO3, only the vertical one-dimensional (1D) solute transport model was conducted. The retarding effect of the aquitard was obtained by analysing the time difference of the two monitoring points M1 and M2. A schematic diagram of the hydrological conceptual model is shown in Fig. 15. The aquifer group is saturated, and the upper and lower flow boundary conditions are Dirichlet boundary conditions. The upper concentration boundary is set as the known concentration boundary. The concentration values are assigned as the average values of the concentrations of NH4+ and NO3 in the groundwater of representative zones of each simulation scheme. The lower concentration boundary is the zero-concentration-gradient boundary. The “three nitrogen” mutual transformation concept was considered in the process of nitrogen pollutant migration from top to bottom. Nitrite (NO2) is an intermediate product of the nitrogen cycle, which is very unstable in the water system and can be oxidized to nitrate in the presence of oxygen and reduced to ammonia or nitrogen under oxygen deficit or no oxygen conditions. Therefore, the retardation-capacity analysis of the aquitard is only conducted for NH4+ and NO3. The monitoring points M1 and M2 were set at the bottom of the phreatic aquifer (also the top of the aquitard; M1), and the top of the leaky aquifer (also the bottom of the aquitard; M2; Fig. 15). By analysing the time difference between the pollutant arriving at monitoring points M1 and M2, quantitative information on the retardation ability of the aquitard to the characteristic pollutant components can be obtained. Additionally, by analysing the concentration curves of the pollutants at M1 and M2, one can obtain the process of change in the concentration of the pollutants at the bottom of the phreatic aquifer and the top of the leaky aquifer.

Simulator and model parameters

The simulator HYDRUS 1D was used. The software has been widely used in studies of saturated aquifers, unsaturated soil water, and salt and pollutant migration (Šimůnek et al. 2008; Kirkham et al. 2019). The corresponding parameters in the model were determined as follows: The characteristic moisture parameters of each stratum in the study area were assigned according to the test data of particle analysis and calculated by using the neural network prediction method in HYDRUS software. It includes the residual water content (θr), saturated water content (θs), saturated hydraulic conductivity (Ks), reciprocal of the air entry value (α), pore diameter distribution coefficient (n) and pore diameter connectivity coefficient (l). The medium bulk density (ρb) was set based on the test, and the hydrodynamic dispersion parameters (Dw) and adsorption isotherm coefficient (Kd) were set according to the laboratory test results. The nitration rate coefficient (k1), nitrosation rate coefficient (k2) and denitrification rate coefficient (k3) were assigned according to the experimental results. The molecular diffusion coefficient of nitrogen in pure water was calculated using the empirical values given in the model. The specific model parameter values are shown in Table 5.

Table 5 Model parameters of different lithologies

Analysis of the simulation results

The aim of the simulation here is only to obtain two of the eight indicators in the evaluation indicator system, here, taking Scheme 1 as an example to simply analyse the aquitard retardation capacity on NH4+ and NO3. The simulation results of Scheme 1 are shown in Figs. 16 and 17, which represent the migration process of NH4+ and NO3 in the fine sand (phreatic aquifer), silty clay (aquitard), medium sand (leaky aquifer) modes (Table 4). Figure 16 shows that after 14.6 years, the NH4+ reaches the bottom of the phreatic aquifer from the upper part of the phreatic aquifer, and it enters the top of the leaky aquifer through the aquitard layer after 56.2 years. As shown in Fig. 17, NO3 reaches the bottom of the phreatic aquifer from the upper part of the phreatic aquifer after 0.11 years, and it enters the top of the leaky aquifer through the weakly permeable layer after 0.22 years. According to the thickness of the aquitard layer in Scheme 1 (9.40 m), it can be calculated that under the representative average regional hydraulic gradient of Scheme 1, the retardation capacity of the unit thickness of the aquitard on NH4+ and NO3 was 0.23 and 86.36 m/year, respectively. The statistical results of other schemes are shown in Table 6. The spatial distribution maps of the retardation capability of the aquitard in the shallow part of the study area to NH4+ and NO3 are shown in Figs. 12 and 13.

Table 6 Statistical table of the aquitard retardation capacity of the different schemes on NH4+ and NO3

The spatial distribution of the retardation capacity of the aquitard for NH4+ and NO3 provides the source of key indicator factors for the establishment of the vulnerability evaluation indicator system of leaky aquifers. In the construction of the vulnerability evaluation system of the leaky aquifer, the retardation ability of the aquitard for NH4+ and for NO3 were taken as evaluation factors and incorporated into the evaluation system.

Fig. 15
figure 15

Sketch map of the hydrogeological conceptual model

Fig. 16
figure 16

NH4+ change curves

Fig. 17
figure 17

NO3 change curves

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, J., Ma, Z., Liu, H. et al. Evaluation of the vulnerability of a leaky aquifer considering the retardation effect of an aquitard for specific pollutants: case study in the Tongzhou Plain, China. Hydrogeol J 28, 687–701 (2020). https://doi.org/10.1007/s10040-019-02078-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02078-w

Keywords

Navigation