Skip to main content

Advertisement

Log in

Laboratory investigation of hydraulic properties of deformable rock samples subjected to different loading paths

Etude en laboratoire des propriétés hydrauliques d’échantillons de roche déformables soumis à différents modes de chargement

Investigación en laboratorio de las propiedades hidráulicas de muestras de roca deformable sometidas a diferentes vías de carga

不同荷载路径可变形岩样水力特征的室内研究

Investigação laboratorial das propriedades hidráulicas de amostras de rocha deformada submetidas a diferentes caminhos de carregamentos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

This study experimentally investigated the internal fracture geometries and hydraulic properties of deformable rock samples subjected to various loading paths. Three loading paths, uniaxial compression, conventional triaxial compression, and triaxial prepeak unloading, were administered to granite samples. A high-precision X-ray microfocus-computed-tomography scanning system was adopted to explore the internal failure modes of the deformable samples, and a series of flow tests with different hydraulic pressures and confining stresses were then performed. The results show that the samples after uniaxial compression exhibit a typical splitting failure mode; however, for conventional triaxial compression and prepeak unloading, the samples generally show tensile-shear failure modes. The relationship between the flow rate and pressure gradient of the sample after uniaxial compression can be best described using the Forchheimer law. Both the linear and nonlinear coefficients in the Forchheimer law increase with increasing confining stress. As the confining stress increases from 4 to 20 MPa, the critical hydraulic gradient that quantifies the onset of nonlinear flow increases from 5.33 to 56.74, but the transmissivity decreases due to the fracture closure. For water flow through the samples after conventional triaxial compression and prepeak unloading, two representative types of nonlinear flow behaviors induced by inertial effects and fracture dilation were observed. Different loading paths lead to different failure mechanisms and thus different fluid-flow responses, and the samples subjected to prepeak unloading with a high confining pressure possess a more significant flow capacity.

Résumé

La présente étude a exploré par voie expérimentale la géométrie de la fracturation interne et les propriétés hydrauliques d’échantillons de roche déformables soumis à divers modes de chargement. Trois modes de chargement, la compression uniaxiale, la compression triaxale conventionnelle et le déchargement triaxial avant-pic, ont été appliqués à des échantillons de granite. Un système de balayage aux rayons X haute définition par tomographie numérisée microfocus, a été adopté pour explorer les modes de défaillance interne des échantillons déformables et une série de tests d’écoulement sous différentes pressions hydrauliques et contraintes de confinement a été réalisée. Les résultats montrent que les échantillons soumis à une compression uniaxiale offrent un mode de défaillance cassante typique; cependant, pour une compression triaxiale conventionnelle et un non déchargement avant pic, les échantillons montrent généralement des modes de défaillance de type traction-cisaillement. La relation entre le débit et le gradient de pression de l’échantillon sous compression uniaxiale peut être décrite par la loi de Forcheimer. Les coefficients linéaires et non-linéaires de la loi de Forcheimer croissent tous deux quand la contrainte de confinement croît. Quand la contrainte de confinement croît de 4 à 20 MPa, le gradient hydraulique critique qui quantifie le début de l’écoulement non linéaire croît de 5.33 à 56.74, mais la transmissivité décroît du fait de la fermeture de la fracture. Pour un écoulement d’eau à travers les échantillons après une compression triaxiale conventionnelle et un non déchargement avant pic, deux types significatifs de comportements d’écoulement non linéaires, induits par des effets inertiels et une dilatation de la fracture, ont été observés. Les différents modes de chargement conduisent à des mécanismes de défaillance différents et donc à des réponses de l’écoulement du fluide différentes et les échantillons soumis à un non déchargement avant pic, avec une pression de confinement élevée, possèdent une capacité d’écoulement plus importante.

Resumen

Este estudio investigó experimentalmente las geometrías internas de fractura y las propiedades hidráulicas de muestras de roca deformable sometidas a diversas vías de carga. A las muestras de granito se les administraron tres vías de carga, compresión uniaxial, compresión triaxial convencional y descarga triaxial previa al máximo. Se adoptó un sistema de tomografía computarizada por microfoco de rayos X de alta precisión para explorar los modos de falla interna de las muestras deformables, y luego se realizaron una serie de pruebas de flujo con diferentes presiones hidráulicas y tensiones de confinamiento. Los resultados muestran que las muestras después de la compresión uniaxial muestran un modo típico de fallo de división; sin embargo, para la compresión triaxial convencional y la descarga antes del máximo, las muestras muestran generalmente modos de fallo por tracción-cizallamiento. La relación entre el caudal y el gradiente de presión de la muestra después de la compresión uniaxial puede describirse mejor utilizando la ley de Forchheimer. Tanto los coeficientes lineales como los no lineales de la ley Forchheimer aumentan con el aumento de la tensión de confinamiento. A medida que la tensión de confinamiento aumenta de 4 a 20 MPa, el gradiente hidráulico crítico que cuantifica el inicio del flujo no lineal aumenta de 5.33 a 56.74, pero la transmisividad disminuye debido al cierre de la fractura. Para el flujo de agua a través de las muestras después de la compresión triaxial convencional y la descarga antes del máximo, se observaron dos tipos representativos de comportamientos de flujo no lineal inducidos por los efectos inerciales y la dilatación de la fractura. Diferentes vías de carga conducen a diferentes mecanismos de fallo y, por lo tanto, a diferentes respuestas de flujo del fluido, y las muestras sometidas a una descarga antes del máximo con una presión de confinamiento elevada poseen una capacidad de flujo más significativa.

摘要

本研究通过实验研究了不同荷载路径可变形岩样的内部裂缝几何形状和水力特征。对花岗岩样品进行了三个荷载路径试验:单轴压缩,常规三轴压缩和三轴峰前卸荷。采用高精度X射线计算机断层成像扫描系统探讨了可变形样品的内部破坏模式,并进行了系列不同液压和约束应力的流动实验。结果表明,单轴压缩后的样品呈典型的劈裂破坏模式;然而,对于常规三轴压缩和峰前卸荷,样品通常显示拉伸-剪切破坏模式。使用Forchheimer定律可以很好描述单轴压缩后样品的流速和压力梯度之间的关系。 Forchheimer定律中的线性和非线性系数都随着约束应力的增加而增加。当约束应力从4 MPa增加到20 MPa,量化非线性流动开始的临界水力梯度从5.33增加到56.74,但由于裂缝闭合,导水系数减小。对于常规三轴压缩和峰前卸荷后通过岩样的水流,观察到惯性效应和裂缝扩张引起的两种典型的非线性流动行为。不同荷载路经导致不同的破坏机理并因此导致不同的流体流动响应,并且经受具有高围压的峰前卸荷的样品具有更显著的流动能力。

Resumo

Este estudo investigou experimentalmente as geometrias internas e as propriedades hidráulicas de fraturas de amostras deformadas de rocha submetidas a vários caminhos de carregamento. Três caminhos de carregamento, compressão uniaxial, compressão triaxial convencional e descarregamento pré-pico triaxial, foram aplicados às amostras de granito. Um sistema de escaneamento de alta precisão de tomografia computadorizada de raios-X foi adotado para explorar os modos de falha interna das amostras deformadas, e foram realizados vários ensaios de escoamento com diferentes pressões hidráulicas e confinamentos de tensões. Os resultados mostram que, após a compressão uniaxial, as amostras exibiram um típico modo de falha de separação; no entanto, para a compressão triaxial convencional e para o descarregamento pré-pico, as amostras mostraram modos típicos de falha do tipo tensão-cisalhamento. A relação entre a taxa de escoamento e o gradiente de pressão das amostras, após a compressão uniaxial, pode ser melhor descrita usando a lei de Forchheimer. Ambos os coeficientes linear e não linear na lei de Forchheimer aumentam com o aumento do estresse de confinamento. Conforme o estresse de confinamento aumenta de 4 até 20 MPa, o gradiente hidráulico crítico, que quantifica o começo do escoamento não linear, aumenta de 5.33 até 56.74, mas a transmissividade diminui por causa do fechamento da fratura. Para o escoamento de água através das amostras, após a compressão triaxial convencional e para o descarregamento pré-pico, foram observados dois tipos representativos de comportamentos de escoamento não linear induzidos por efeitos inerciais e dilatação de fratura. Diferentes caminhos de carregamento ocasionam diferentes mecanismos de falha e assim diferentes respostas fluido-escoamento, e as amostras submetidas ao descarregamento pré-pico com elevada pressão de confinamento possuem uma capacidade de escoamento mais significativa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bandis SC, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci 20(6):249–268

    Article  Google Scholar 

  • Barton N, Bandis S, Bakhtar K (1985) Strength, deformation and permeability of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22(3):121–140

    Article  Google Scholar 

  • Berkowitz B, Miller CT, Parlange MB, Hassanizadeh SM (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25(8–12):861–884

    Article  Google Scholar 

  • Brush DJ, Thomson NR (2003) Fluid flow in synthetic rough-walled fractures: Navier-Stokes, Stokes, and local cubic law simulations. Water Resour Res 39(4):1037–1041

    Article  Google Scholar 

  • Chen YF, Zhou JQ, Hu SH, Hu R, Zhou CB (2015) Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures. J Hydrol 529:993–1006

    Article  Google Scholar 

  • Cherubini C, Giasi CI, Pastore N (2012) Bench scale laboratory tests to analyze non-linear flow in fractured media. Hydrol Earth Syst Sci Discuss 9(4):2511–2522

    Article  Google Scholar 

  • Durham WB, Bonner BP (1994) Self-propping and fluid flow in slightly offset joints at high effective pressures. J Geophys Res 99(B5):9391–9399

    Article  Google Scholar 

  • Esaki T, Du S, Mitani Y, Ikusada K, Jing L (1999) Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint. Int J Rock Mech Min Sci 36(5):641–650

    Article  Google Scholar 

  • Huang N, Liu RC, Jiang YJ, Cheng YF, Li B (2019) Shear-flow coupling characteristics of a three-dimensional discrete fracture network-fault model considering stress-induced aperture variations. J Hydrol 571:416–424

    Article  Google Scholar 

  • Huenges E, Kohl T, Kolditz O, Bremer J, Scheck-Wenderoth M, Vienken T (2013) Geothermal energy systems: research perspective for domestic energy provision. Environ Earth Sci 70(8):3927–3933

    Article  Google Scholar 

  • Javadi M, Sharifzadeh M, Shahriar K, Mitani Y (2014) Critical Reynolds number for nonlinear flow through rough-walled fractures: the role of shear processes. Water Resour Res 50(2):1789–1804

    Article  Google Scholar 

  • Ju Y, Zhang QG, Yang YM, Xie HP, Gao F, Wang HJ (2013) An experimental investigation on the mechanism of fluid flow through single rough fracture of rock. Sci China Technol Sci 56(8):2070–2080

    Article  Google Scholar 

  • Ju Y, Yang YM, Chen JL, Liu P, Dai T, Guo YC, Zheng LG (2016) 3D reconstruction of low-permeability heterogeneous glutenites and numerical simulation of hydraulic fracturing behavior (in Chinese). Chin Sci Bull 61(1):82–93

    Article  Google Scholar 

  • Kosakowski G, Berkowitz B (1999) Flow pattern variability in natural fracture intersections. Geophys Res Lett 26(12):1765–1768

    Article  Google Scholar 

  • Latham JP, Xiang J, Belayneh M, Nick H, Tsang C, Blunt M (2013) Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. Int J Rock Mech Min Sci 57:100–112

    Article  Google Scholar 

  • Leung CTO, Zimmerman RW (2012) Estimating the hydraulic conductivity of two-dimensional fracture networks using network geometric properties. Transp Porous Media 93(3):777–797

    Article  Google Scholar 

  • Li B, Jiang YJ, Koyama T, Jing LR, Tanabashi Y (2008) Experimental study of the hydro-mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures. Int J Rock Mech Min Sci 45(3):362–375

    Article  Google Scholar 

  • Li Y, Sun S, Tang C (2019) Analytical prediction of the shear behavior of rock joints with quantified waviness and unevenness through wavelet analysis. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-019-01817-5

  • Liu RC, Li B, Jiang YJ (2016a) Critical hydraulic gradient for nonlinear flow through rock fracture networks: the roles of aperture, surface roughness, and number of interactions. Adv Water Resour 88:53–65

    Article  Google Scholar 

  • Liu RC, Yu LY, Jiang YJ (2016b) Quantitative estimates of normalized transmissivity and the onset of nonlinear fluid flow through rough rock fractures. Rock Mech Rock Eng 50:1063–1071

    Article  Google Scholar 

  • Liu RC, Jing HW, He LX, Zhu TT, Yu LY, Su HJ (2017) An experimental study of the effect of fillings on hydraulic properties of single fractures. Environ Earth Sci 76(20):684

    Article  Google Scholar 

  • Liu RC, Li B, Jiang YJ, Yu LY (2018) A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2D fracture networks. Adv Water Resour 111:289–300

    Article  Google Scholar 

  • Marcoulaki EC, Venetsanos A, Papazoglou IA (2017) Quantitative safety analysis of cryogenic liquid releases in a deep underground large scale installation. Reliab Eng Syst Saf 162:51–63

    Article  Google Scholar 

  • Min KB, Rutqvist J, Tsang CF, Jing L (2004) Stress-dependent permeability of fractured rock masses: a numerical study. Int J Rock Mech Min Sci 41(7):1191–1210

    Article  Google Scholar 

  • Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech Min Sci 38(3):317–329

    Article  Google Scholar 

  • Qian JZ, Chen Z, Zhan HB, Guan HC (2011) Experimental study of the effect of roughness and Reynolds number on fluid flow in rough-walled single fractures: a check of local cubic law. Hydrol Process 25(4):614–622

    Article  Google Scholar 

  • Qiu SL, Feng XT, Xiao JQ, Zhang CQ (2014) An experimental study on the pre-peak unloading damage evolution of marble. Rock Mech Rock Eng 47(2):401–419

    Article  Google Scholar 

  • Ranjith PG, Darlington W (2007) Nonlinear single-phase flow in real rock joints. Water Resour Res 43(9):146–156

    Article  Google Scholar 

  • Raven KG, Gale JE (1985) Water flow in a natural rock fracture as a function of stress and sample size. J Steroid Biochem 22(4):251–261

    Google Scholar 

  • Rong G, Yang J, Cheng L, Zhou CB (2016) Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process. J Hydrol 541:1385–1394

    Article  Google Scholar 

  • Sufian A, Russell AR (2013) Microstructural pore changes and energy dissipation in Gosford sandstone during pre-failure loading using X-ray CT. Int J Rock Mech Min Sci 57(1):119–131

    Article  Google Scholar 

  • Vaissière RDL, Armand G, Talandier J (2015) Gas and water flow in an excavation-induced fracture network around an underground drift: a case study for a radioactive waste repository in clay rock. J Hydrol 521:141–156

    Article  Google Scholar 

  • Wang C, Zhai P, Chen Z, Liu J, Wang L, Xie J (2017) Experimental study of coal matrix-fracture interaction under constant volume boundary condition. Int J Coal Geol 181:124–132

    Article  Google Scholar 

  • Wang G, Wang K, Wang S, Elsworth D, Jiang Y (2018) An improved permeability evolution model and its application in fractured sorbing media. J Nat Gas Sci Eng 56:222–232

    Article  Google Scholar 

  • Wang M, Chen YF, Ma GW, Zhou JQ, Zhou CB (2016) Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: lattice Boltzmann simulations. Adv Water Resour 96:373–388

    Article  Google Scholar 

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6):1016–1024

    Article  Google Scholar 

  • Xia CC, Qian X, Lin P, Xiao WM, Gui Y (2016) Experimental investigation of nonlinear flow characteristics of real rock joints under different contact conditions. J Hydraul Eng. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001238

  • Xie LZ, Gao C, Ren L, Li CB (2015) Numerical investigation of geometrical and hydraulic properties in a single rock fracture during shear displacement with the Navier-Stokes equations. Environ Earth Sci 73(11):7061–7074

    Article  Google Scholar 

  • Yang SQ, Ranjith PG, Huang YH, Yin PF, Jing HW, Gui YL, Yu QL (2015) Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading. Geophys J Int 201(2):662–682

    Article  Google Scholar 

  • Yeo IW, Freitas MHD, Zimmerman RW (1998) Effect of shear displacement on the aperture and permeability of a rock fracture. Int J Rock Mech Min Sci 35(8):1051–1070

    Article  Google Scholar 

  • Yi W, Wang E (2016) Experimental research on measurement of permeability coefficient on the fault zone under coal mine in situ. Arab J Geosci 9(4):1–9

    Article  Google Scholar 

  • Yin Q, Jing H, Su H, Wang H (2017a) CO2 permeability analysis of caprock containing a single fracture subject to coupled thermal-hydro-mechanical effects. Math Probl Eng. https://doi.org/10.1155/2017/1290748

  • Yin Q, Ma GW, Jing HW, Su HJ, Liu RC (2017b) Hydraulic properties of 3D rough-walled fractures during shearing: an experimental study. J Hydrol 555:169–184

    Article  Google Scholar 

  • Yin Q, Jing HW, Ma GW, Su HJ, Liu RC (2018) Investigating the roles of included angle and loading condition on the critical hydraulic gradient of real rock fracture networks. Rock Mech Rock Eng 51(10):3167–3177

    Article  Google Scholar 

  • Zeng Z, Grigg R (2006) A criterion for non-Darcy flow in porous media. Transp Porous Media 63(1):57–69

    Article  Google Scholar 

  • Zhang ZY, Nemcik J (2013) Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures. J Hydrol 447(1):139–151

    Article  Google Scholar 

  • Zhang ZY, Nemcik J, Ma S (2013) Micro- and macro-behaviour of fluid flow through rock fractures: an experimental study. Hydrogeol J 21(8):1717–1729

    Article  Google Scholar 

  • Zhao GF, Russell AR, Zhao XB, Khalili N (2014) Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the distinct lattice spring model with X-ray micro CT. Int J Solids Struct 51(7–8):1587–1600

    Article  Google Scholar 

  • Zhao J, Wang G (2010) Unloading and reverse yielding of a finite cavity in a bounded cohesive-frictional medium. Comput Geotech 37(1–2):239–245

    Article  Google Scholar 

  • Zhou JQ, Hu SH, Fang S, Chen YF, Zhou CB (2015) Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading. Int J Rock Mech Min Sci 80:202–218

    Article  Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23(1):1–30

    Article  Google Scholar 

  • Zimmerman RW, AL-Yaarubi A, Pain CC, Grattoni CA (2004) Non-linear regimes of fluid flow in rock fractures. Int J Rock Mech Min Sci 41(3):163–169

    Article  Google Scholar 

  • Zou LC, Jing LR, Cvetkovic V (2017) Shear-enhanced nonlinear flow in rough-walled rock fractures. Int J Rock Mech Min Sci 97:33–45

    Article  Google Scholar 

Download references

Funding information

The financial support from the Fundamental Research Funds for the Central Universities, China (No. 2018XKQYMS07), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Q., Jing, H., Ma, G. et al. Laboratory investigation of hydraulic properties of deformable rock samples subjected to different loading paths. Hydrogeol J 27, 2617–2635 (2019). https://doi.org/10.1007/s10040-019-02015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02015-x

Keywords

Navigation