Skip to main content
Log in

Investigating the Roles of Included Angle and Loading Condition on the Critical Hydraulic Gradient of Real Rock Fracture Networks

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

Q :

Volumetric flow rate

w :

Width of a fracture

b h :

Hydraulic aperture

J :

Hydraulic gradient

J c :

Critical hydraulic gradient

P :

Hydraulic pressure

u :

Flow velocity vector

ρ :

Fluid density

E :

Nonlinear effect factor

T :

Transmissivity

T/T 0 :

Normalized transmissivity

x i :

X-coordinate of the fracture surface profile

z i :

Z-coordinate of the fracture surface profile

Z 2 :

Dimensionless roughness parameter

a :

Linear coefficient in the Forchheimer’s law

b :

Nonlinear coefficient in the Forchheimer’s law

l :

Fracture spacing

F x :

X-directional horizontal boundary load

F y :

Y-directional horizontal boundary load

σ fne :

Effective stress

µ :

Dynamic viscosity

β :

Included angle

λ :

Pressure ratio

α :

First regression coefficient

JRC:

Joint roughness coefficient

Re :

Reynolds number

Re c :

Critical Reynolds number

References

  • Barton N (1973) Review of a new shear-strength criterion for rock joints. Eng Geol 7(4):287–332

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media, Am. Elsevier, New York

    Google Scholar 

  • Brush DJ, Thomson NR (2003) Fluid flow in synthetic rough-walled fractures: Navier–Stokes, Stokes, and local cubic law simulations. Water Resour Res 39(4):1037–1041

    Article  Google Scholar 

  • Durham WB, Bonner BP (1994) Self-propping and fluid flow in slightly offset joints at high effective pressures. J Geophys Res 99(B5):9391–9399

    Article  Google Scholar 

  • Huang N, Liu R, Jiang Y (2017) Numerical study of the geometrical and hydraulic characteristics of 3D self-affine rough fractures during shear. J Nat Gas Sci Eng 45:127–142

    Article  Google Scholar 

  • Javadi M, Sharifzadeh M, Shahriar K, Mitani Y (2014) Critical Reynolds number for nonlinear flow through rough-walled fractures: the role of shear processes. Water Resour Res 50(2):1789–1804

    Article  Google Scholar 

  • Kosakowski G, Berkowitz B (1999) Flow pattern variability in natural fracture intersections. Geophys Res Lett 26(12):1765–1768

    Article  Google Scholar 

  • Lee H, Jeon S (2011) An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct 48:979–999

    Article  Google Scholar 

  • Min KB, Rutqvist J, Tsang CF, Jing L (2004) Stress-dependent permeability of fractured rock masses: a numerical study. Int J Rock Mech Min Sci 41(7):1191–1210

    Article  Google Scholar 

  • Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech Min Sci 38(3):317–329

    Article  Google Scholar 

  • Qian J, Zhan H, Chen Z, Ye H (2011) Experimental study of solute transport under non-Darcian flow in a single fracture. J Hydrol 399(3–4):246–254

    Article  Google Scholar 

  • Ranjith PG, Viete DR (2011) Applicability of the ‘cubic law’ for non-Darcian fracture flow. J Pet Sci Eng 78(2):321–327

    Article  Google Scholar 

  • Rong G, Yang J, Cheng L, Zhou CB (2016) Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process. J Hydrol 541:1385–1394

    Article  Google Scholar 

  • Rutqvist J, Stephansson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11(1):7–40

    Article  Google Scholar 

  • Tse R, Cruden DM (1979) Estimating joint roughness coefficients. Int J Rock Mech Min Sci Geomech Abstr 16(5):303–307

    Article  Google Scholar 

  • Wang M, Chen YF, Ma GW, Zhou JQ, Zhou CB (2016) Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations. Adv Water Resour 96:373–388

    Article  Google Scholar 

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of Cubic Law for fluid flow in a deformable rock fracture. Water Resour Res 16(6):1016–1024

    Article  Google Scholar 

  • Yin Q, Ma GW, Jing HW, Su HJ, Liu RC (2017) Hydraulic properties of 3D rough-walled fractures during shearing: an experimental study. J Hydrol 555:169–184

    Article  Google Scholar 

  • Zeng Z, Grigg R (2006) A criterion for non-Darcy flow in porous media. Transp Porous Media 63(1):57–69

    Article  Google Scholar 

  • Zhang ZY, Nemcik J (2013) Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures. J Hydrol 447(1):139–151

    Article  Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23(1):1–30

    Article  Google Scholar 

  • Zimmerman RW, AL-Yaarubi A, Pain CC, Grattoni CA (2004) Non-linear regimes of fluid flow in rock fractures. Int J Rock Mech Min Sci 41(3):163–169

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Key Basic Research and Development Program of China, China (No. 2017YFC0603001), National Natural Science Foundation of China, China (Nos. 51734009, 51704279, 51709260), and Natural Science Foundation of Jiangsu Province, China (No. BK20170270) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richeng Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Q., Jing, H., Ma, G. et al. Investigating the Roles of Included Angle and Loading Condition on the Critical Hydraulic Gradient of Real Rock Fracture Networks. Rock Mech Rock Eng 51, 3167–3177 (2018). https://doi.org/10.1007/s00603-018-1526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1526-x

Keywords

Navigation