Skip to main content

Advertisement

Log in

Protecting groundwater levels and ecosystems with simple management approaches

Protection des niveaux piézométriques et les écosystèmes par des approches simples de gestion

Protección de los niveles de agua subterránea y de los ecosistemas con métodos simples de manejo

用简单的管理方法保护地下水位和生态系统

Protegendo os níveis de água subterrânea e ecossistemas com simples abordagens de gestão

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater quantity is often managed using simple tools. The most common are (1) basin or sub-basin scale volumetric allocations, usually based on either historic use or estimates of recharge, (2) trigger-level management which regulates use according to observations of groundwater level, and (3) buffer zones, which control the location of wells, particularly around groundwater-dependent ecosystems (GDEs). The volumetric approach limits the long-term impact of abstraction and provides a stable, secure supply for groundwater users. However, this approach does not consider the spatial distribution of recharge and discharge, and so is poor at protecting GDEs. Buffer zones provide an effective means of limiting the short-term impact of abstraction on GDEs, and can also be used to shift impact from high to low priority GDEs. However, buffer zones mostly delay the impacts of abstraction on groundwater level and flow, and are less effective for managing long-term impacts. Groundwater response triggers aim to directly control groundwater levels, although the success of this approach is highly dependent on the location of the observation well, and the trigger value. This makes its successful implementation extremely difficult. Used alone, none of these approaches will successfully protect the environment. In combination, they can provide reasonable protection for ecosystems and reliability of groundwater supply for users.

Résumé

L’hydrogéologie quantitative est. souvent gérée à l’aide d’outils simples. Les plus courants sont (1) les allocations volumétriques à l’échelle du bassin ou du sous-bassin, basées généralement soit sur l’utilisation historique soit sur des estimations de la recharge, (2) la gestion d’un seuil d’alerte, qui régule l’utilisation en fonction des observations des niveaux piézométriques, et (3) les zones tampon, qui contrôlent l’emplacement des puits, en particulier autour des écosystèmes dépendant des eaux souterraines (EsDES). L’approche volumétrique limite l’impact à long terme de l’exploitation et fournit un approvisionnement stable et sécurisé pour les usagers des eaux souterraines. Cependant, cette approche ne prend pas en compte la distribution spatiale de la recharge et de la décharge, et de ce fait est. peu adaptée à la protection des EsDES. Les zones tampon fournissent des moyens efficaces de limitation de l’impact à court terme de l’exploitation sur les EsDES, et peuvent aussi être utilisées pour déplacer l’impact sur les EsDES d’une priorité élevée à moindre. Cependant, les zones tampon retardent principalement les impacts des prélèvements sur le niveau piézométrique et l’écoulement des eaux souterraines, et sont moins efficaces pour gérer les effets à long terme. Les seuils d’alerte à la réponse des eaux souterraines visent à contrôler directement les niveaux piézométriques, bien que le succès de cette approche dépende fortement de l’emplacement du piézomètre et de la valeur du seuil d’alerte. Ceci rend la réussite de sa mise en œuvre extrêmement difficile. Utilisée seule, aucune de ces approches ne protègera efficacement l’environnement. Combinées, elles peuvent assurer une protection acceptable des écosystèmes et la fiabilité de l’approvisionnement en eau souterraine pour les utilisateurs.

Resumen

La cantidad de agua subterránea a menudo se maneja con herramientas simples. Las más comunes son (1) asignaciones volumétricas de cuenca o subcuenca, generalmente basadas en el uso histórico o estimaciones de recarga, (2) nivel de activación de la gestión que regula el uso según las observaciones del nivel freático, y (3) zonas de amortiguamiento, que controlan la ubicación de los pozos, particularmente alrededor de los ecosistemas dependientes del agua subterránea (GDE). El enfoque volumétrico limita el impacto a largo plazo de la extracción y proporciona un suministro estable y seguro para los usuarios de aguas subterráneas. Sin embargo, este enfoque no tiene en cuenta la distribución espacial de la recarga y la descarga, por lo que es deficiente para proteger los GDE. Las zonas de amortiguamiento proporcionan un medio eficaz para limitar el impacto a corto plazo de la explotación en las GDE, y también se pueden usar para cambiar el impacto de las GDE de alta a baja prioridad. Sin embargo, principalmente las zonas de amortiguamiento retrasan los impactos de la extracción sobre el nivel y el caudal del agua subterránea, y son menos efectivas para la gestión de impactos a largo plazo. Los desencadenantes de respuesta de agua subterránea apuntan a controlar directamente los niveles de agua subterránea, aunque el éxito de este método depende en gran medida de la ubicación del pozo de observación y del valor de activación. Esto hace que su implementación exitosa sea extremadamente difícil. Utilizado solo, ninguno de estos enfoques protegerá con éxito el medio ambiente. En combinación, pueden proporcionar una protección razonable para los ecosistemas y la confiabilidad del suministro de agua subterránea para los usuarios.

摘要

经常采用简单的工具管理地下水量。最常见的是(1)流域或亚流域尺度的容积分配,通常基于历史利用状况或补给估算值;(2)根据地下水为观测结果调节利用量的触发水准管理;以及(3)控制井位的缓冲区,特别是在依赖于地下水的生态系统周围控制井位的缓冲区。容积方法消减了长期抽水的影响,并为地下水用户提供了稳定的、安全的供水。然而,这个方法没有考虑补给和排泄的空间分布,因此,在保护依赖于地下水的生态系统中表现很差。缓冲区提供了限制抽水对依赖于地下水系统的短期影响的有效方法,并可用来根据依赖于地下水系统的优先权的高低来改变影响程度。然而,缓冲区通常延迟了抽水对地下水位和水流的影响,在管理长期的影响中效果较差。地下水响应触发要素的目的就是直接控制地下水位,尽管此种方法成功高度依赖于观测井的位置和触发要素值。这就使该方法的成功实施变的非常困难。如果单单使用一种方法,这些方法没有一种能够成功保护环境。如果多种方法结合在一起,它们就能为生态系统提供合理的保护及为用户提供可靠的地下水供应。

Resumo

A quantidade disponível de águas subterrâneas é frequentemente gerenciada usando ferramentas simples. As mais comuns são (1) alocações volumétricas em escada de bacia ou sub-bacia de acordo com seu uso histórico ou estimativas de recarga, (2) gerenciamento por meio de valores gatilho para regular o uso de acordo com as observações do nível de água subterrânea, e (3) zonas de amortecimento, que controlam a alocação dos poços, particularmente em torno de ecossistemas dependentes de águas subterrâneas (EDASs). A abordagem volumétrica limita o impacto de longo prazo da abstração e fornece um suprimento estável e seguro para os usuários das águas subterrâneas. No entanto, esta abordagem não considera a distribuição espacial de recarga e descarga, e por isso é insuficiente para proteger EDASs. As zonas de amortecimento fornecem um meio eficaz de limitar o impacto de curto prazo nas EDASs, e também pode ser usado para mudar o impacto nas EDASs de alta para baixa prioridade. No entanto, as zonas de amortecimento atrasam, principalmente, os impactos da captação no nível e no fluxo das águas subterrâneas e são menos eficazes para o gerenciamento de impactos de longo prazo. Os valores gatilho de águas subterrâneas visam controlar diretamente os níveis de águas subterrâneas, embora o sucesso dessa abordagem seja altamente dependente da localização do poço de observação e do valor de referência. Isto torna extremamente difícil uma implementação bem sucedida. Usadas sozinhas, nenhuma dessas abordagens protegerá com sucesso o ambiente. Combinadas, eles podem fornecer proteção razoável para os ecossistemas e segurança hídrica de água subterrânea para os usuários.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adelaide and Mount Lofty Ranges Natural Resources Management Board (2009) Water Allocation Plan for the Clare Valley Prescribed Water Resources Area. Adelaide and Mount Lofty Ranges Natural Resources Management Board, Adelaide, Australia

  • Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42:12–16. https://doi.org/10.1111/j.1745-6584.2004.tb02446.x

    Article  Google Scholar 

  • Amlin NM, Rood SB (2002) Comparative tolerances of riparian willows and cottonwoods to water-table decline. Wetlands 22:338–346. https://doi.org/10.1672/0277-5212(2002)022[0338:CTORWA]2.0.CO;2

  • Anderson T, Cauchi T, Mozina M, Smyth B (2014) Approaches to achieve sustainable use and management of groundwater resources in the Murray-Darling Basin using rules and resource condition limits literature review report. GHD, Melbourne, VIC, Australia

    Google Scholar 

  • Barlow PM, Ahlfeld DP, Dickerman DC (2003) Conjunctive-management models for sustained yield of stream–aquifer systems. J Water Resour Plan Manag 129:35–48. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:1(35)

    Article  Google Scholar 

  • Barlow PM, Leake SA (2012) Streamflow depletion by wells: understanding and managing the effects of groundwater pumping on streamflow. US Geol Surv Circ 1376

  • Bekesi G, Hodges S (2006) The protection of groundwater dependent ecosystems in Otago, New Zealand. Hydrogeol J 14:1696–1701. https://doi.org/10.1007/s10040-006-0062-z

    Article  Google Scholar 

  • Bernadez FG, Rey Benayas JM, Martinez A (1993) Ecological impact of groundwater extraction on wetlands (Douro Basin, Spain). J Hydrol 141:219–238. https://doi.org/10.1016/0022-1694(93)90051-A

    Article  Google Scholar 

  • Bertrand G, Goldscheider N, Gobat JM, Hunkeler D (2012) Review: from multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems. Hydrogeol J 20:5–25. https://doi.org/10.1007/s10040-011-0791-5

    Article  Google Scholar 

  • Bertrand G, Masini J, Goldscheider N, Meeks J, Lavastre V, Celle-Jeanton H, Gobat JM, Hunkeler D (2014) Determination of spatiotemporal variability of tree water uptake using stable isotopes (δ18O, δ2H) in an alluvial system supplied by a high-altitude watershed, Pfyn forest, Switzerland. Ecohydrology 7:319–333. https://doi.org/10.1002/eco.1347

    Article  Google Scholar 

  • Boulton AJ, Hancock PJ (2006) Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. Aust J Bot 54:133–144. https://doi.org/10.1071/BT05074

    Article  Google Scholar 

  • Bredehoeft JD (1997) Safe yield and the water budget myth. Ground Water 35:929

    Article  Google Scholar 

  • Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water. https://doi.org/10.1111/j.1745-6584.2002.tb02511.x

  • Bredehoeft JD (2011) Hydrologic trade-offs in conjunctive use management. Ground Water 49:468–475. https://doi.org/10.1111/j.1745-6584.2010.00762.x

    Article  Google Scholar 

  • Bredehoeft JD, Durbin T (2009) Ground water development: the time to full capture problem. Ground Water 47:506–514. https://doi.org/10.1111/j.1745-6584.2008.00538.x

    Article  Google Scholar 

  • Bredehoeft JD, Kendy E (2008) Strategies for offsetting seasonal impacts of pumping on a nearby stream. Ground Water 46:23–29. https://doi.org/10.1111/j.1745-6584.2007.00367.x

    Google Scholar 

  • Bredehoeft JD, Young RA (1970) The temporal allocation of ground water: a simulation approach. Water Resour Res 6:3–21. https://doi.org/10.1029/WR006i001p00003

    Article  Google Scholar 

  • Brodie R, Sundaram B, Tottenham R, Hostetler S, Ransley T (2007) An adaptive management framework for connected groundwater–surface water resources in Australia. Dept. of Fisheries, Australian Gov., Canberra, Australia

  • Brodie RS, Hostetler S, Slatter E (2008) Comparison of daily percentiles of streamflow and rainfall to investigate stream–aquifer connectivity. J Hydrol 349:56–67. https://doi.org/10.1016/j.jhydrol.2007.10.056

    Article  Google Scholar 

  • Brown K, Harrington G, Lawson J (2006) Review of groundwater resource condition and management principles for the Tertiary Limestone Aquifer in the South East of South Australia. DWLBC report 2006/2, Dept. of Water, Land and Biodiversity Conservation, Adelaide, Australia

  • Canham CA, Froend RH, Stock WD, Davies M (2012) Dynamics of phreatophyte root growth relative to a seasonally fluctuating water table in a Mediterranean-type environment. Oecologia 170:909–916. https://doi.org/10.1007/s00442-012-2381-1

    Article  Google Scholar 

  • Cooper DJ, Wolf EC, Ronayne MJ, Roche JW (2015) Effects of groundwater pumping on the sustainability of a mountain wetland complex, Yosemite National Park, California. J Hydrol Reg Stud 3:87–105. https://doi.org/10.1016/j.ejrh.2014.10.002

    Article  Google Scholar 

  • Currell MJ (2016) Drawdown “triggers”: a misguided strategy for protecting groundwater-fed streams and springs. Groundwater 54:619–622. https://doi.org/10.1111/gwat.12425

    Article  Google Scholar 

  • Currell M, Gleeson T, Dahlhaus P (2016) A new assessment framework for transience in hydrogeological systems. Groundwater 54:4–14. https://doi.org/10.1111/gwat.12300

    Article  Google Scholar 

  • Davids JC, Mehl SW (2015) Sustainable capture: concepts for managing stream–aquifer systems. Groundwater 53:851–858. https://doi.org/10.1111/gwat.12297

    Article  Google Scholar 

  • Der Yeh H, Chang YC, Zlotnik VA (2008) Stream depletion rate and volume from groundwater pumping in wedge-shape aquifers. J Hydrol 349:501–511. https://doi.org/10.1016/j.jhydrol.2007.11.025

    Article  Google Scholar 

  • Downing RA, Oakes DB, Wilkinson WB, Wright CE (1974) Regional development of groundwater resources in combination with surface water. J Hydrol 22:155–177. https://doi.org/10.1016/0022-1694(74)90102-4

    Article  Google Scholar 

  • Dresel PE, Clark R, Cheng X, Reid M, Terry A, Fawcett J, Cochrane D (2010) Mapping terrestrial groundwater dependent ecosystems: method development and example output. State of Victoria, Melbourne

  • Eamus D (2009) Identifying groundwater dependent ecosystems: a guide for land and water managers. Land and Water Australia, Clayton, Australia

  • Eamus D, Froend R, Hose G, Murray B, Management ER (2006) A functional methodology for determining the GW regime needed to maintain health of groundwater dependent vegetation. Aust J Bot 54:97–114

    Article  Google Scholar 

  • Evans R, Merrick N, Gates G (2004) Groundwater level response management: strengths, weaknesses and opportunities. In: The 9th Murray-Darling Basin groundwater workshop 2004, Bendigo, Australia, 2004

  • Evans WR, Evans RS, Holland GF (2012) Conjunctive use and management of groundwater and surface water within existing irrigation commands: the need for a new focus on an old paradigm. Thematic paper no. 2. Groundwater Governance, Sinclair Knight Merz, Australia, pp 1–40

  • Eyre Peninsula Natural Resources Management Board (2016) Water allocation plan for the southern basins and Musgrave prescribed wells areas. Gov of South Australia, Adelaide, Australia

  • Fienen MN, Nolan BT, Feinstein DT (2016) Evaluating the sources of water to wells: three techniques for metamodeling of a groundwater flow model. Environ Model Softw 77:95–107. https://doi.org/10.1016/j.envsoft.2015.11.023

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Froend R, Loomes R, Horwitz P, Bertuch M, Storey A, Bamford M (2004) Study of ecological water requirements on the Gnangara and Jandakot mounds. Centre for Ecosystem Management, ECU, Joondalup, Australia

  • Gleeson T, Cardiff M (2013) The return of groundwater quantity: a mega-scale and interdisciplinary “future of hydrogeology”? Hydrogeol J 21:1169–1171. https://doi.org/10.1007/s10040-013-0998-8

    Article  Google Scholar 

  • Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, Allen DM, Zhou Y (2010) Groundwater sustainability strategies. Nat Geosci 3:378–379. https://doi.org/10.1038/ngeo881

    Article  Google Scholar 

  • Glover RE, Balmer GG (1954) River depletion resulting from pumping a well near a river. EOS Trans Am Geophys Union 35:468–470. https://doi.org/10.1029/TR035i003p00468

    Article  Google Scholar 

  • Gunderson L (1999) Resilience, flexibility and adaptive management: antidotes for spurious certitude? Ecol Soc 3. https://doi.org/10.5751/ES-00089-030107

  • Howe CW, Schurmeier DR, Douglas Shaw J (1986) Innovative approaches to water allocation: the potential for water markets. Water Resour Res 22:439–445. https://doi.org/10.1029/WR022i004p00439

    Article  Google Scholar 

  • Jenkins CT (1977) Computation of rate volume of stream depletion by wells. Techniques of Water Resources Investigations, US Geological Survey, Reston, VA, 17 pp

  • Kath J, Dyer FJ (2017) Why groundwater matters: an introduction for policy-makers and managers. Policy Stud 38:447–461. https://doi.org/10.1080/01442872.2016.1188907

    Article  Google Scholar 

  • Kath J, Reardon-Smith K, Le Brocque AF, Dyer FJ, Dafny E, Fritz L, Batterham M (2014) Groundwater decline and tree change in floodplain landscapes: identifying non-linear threshold responses in canopy condition. Glob Ecol Conserv 2:148–160. https://doi.org/10.1016/j.gecco.2014.09.002

    Article  Google Scholar 

  • Kendy E, Bredehoeft JD (2006) Transient effects of groundwater pumping and surface-water-irrigation returns on streamflow. Water Resour Res 42:1–11. https://doi.org/10.1029/2005WR004792

    Article  Google Scholar 

  • Kløve B, Ala-aho P, Bertrand G, Boukalova Z, Ertürk A, Goldscheider N, Ilmonen J, Karakaya N, Kupfersberger H, Kvœrner J, Lundberg A, Mileusnić M, Moszczynska A, Muotka T, Preda E, Rossi P, Siergieiev D, Šimek J, Wachniew P, Angheluta V, Widerlund A (2011) Groundwater dependent ecosystems, part I: hydroecological status and trends. Environ Sci Pol 14:770–781. https://doi.org/10.1016/j.envsci.2011.04.002

    Article  Google Scholar 

  • Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ, Kupfersberger H, Kværner J, Muotka T, Mykrä H, Preda E, Rossi P, Uvo CB, Velasco E, Pulido-Velazquez M (2014a) Climate change impacts on groundwater and dependent ecosystems. J Hydrol 518:250–266. https://doi.org/10.1016/j.jhydrol.2013.06.037

    Article  Google Scholar 

  • Kløve B, Balderacchi M, Gemitzi A, Hendry S, Kværner J, Muotka T, Preda E (2014b) Protection of groundwater dependent ecosystems: current policies and future management options. Water Policy 16:1070–1086. https://doi.org/10.2166/wp.2014.014

    Article  Google Scholar 

  • Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38:1–5. https://doi.org/10.1029/2011GL048604

    Article  Google Scholar 

  • Konikow LF, Leake SA (2014) Depletion and capture: revisiting the source of water derived from wells. Ground Water 52:100–111. https://doi.org/10.1111/gwat.12204

    Article  Google Scholar 

  • Korus JT, Burbach ME (2009) Analysis of aquifer depletion criteria with implications for groundwater management. Great Plains Res 19:187–200

    Google Scholar 

  • Leake SA (2011) Capture-rates and directions of groundwater flow don’t matter! Ground Water 49:456–458. https://doi.org/10.1111/j.1745-6584.2010.00797.x

    Article  Google Scholar 

  • Leake SA, Reeves HW, Dickinson JE (2010) A new capture fraction method to map how pumpage affects surface water flow. Ground Water 48:690–700. https://doi.org/10.1111/j.1745-6584.2010.00701.x

    Article  Google Scholar 

  • Le Maitre DC, Scott DF, Colvin C (1999) A review of information on interactions between vegetation and groundwater. Water SA 25:137–152. http://www.wrc.org.za. Accessed August 2018

  • Lv J, Wang XS, Zhou Y, Qian K, Wan L, Eamus D, Tao Z (2013) Groundwater-dependent distribution of vegetation in Hailiutu River catchment: a semi-arid region in China. Ecohydrology 6:142–149. https://doi.org/10.1002/eco.1254

    Article  Google Scholar 

  • Mahoney JM, Rood SB (1992) Response of a hybrid poplar to water-table decline in different substrates. For Ecol Manag 54:141–156. https://doi.org/10.1016/0378-1127(92)90009-x

    Article  Google Scholar 

  • MDBA (2012) The proposed groundwater baseline and sustainable diversion limits: methods report. MDBA, Canberra, Australia

  • Münch Z, Conrad J (2007) Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa. Hydrogeol J 15:19–28. https://doi.org/10.1007/s10040-006-0125-1

    Article  Google Scholar 

  • Noyola-Medrano MC, Ramos-Leal JA, Domínguez-Mariani E, Pineda-Martínez LF, López-Loera H, Carbajal N (2009) Factors causing the mining of aquifers in arid environments: case of San Luis Potosí valley. Rev Mex Ciencias Geol 26:395–410

    Google Scholar 

  • NSW Office of Water (2010) Water sharing plan for the Peel Valley regulated, unregulated, alluvial and fractured rock water sources. NSW Office of Water, Wollongong, Australia

  • Ordens CM, Werner AD, Alcoe DW, Hutson JL, Ward JD, Simmons CT (2010) Trigger-level versus flux-based management approaches applied to coastal aquifers. Proc. of SWIM21 - 21st Salt Water Intrusion Meeting, pp 200–202

  • Parsons S, Caruso N, Barber S, Hayes S (2010) Evolving issues and practices in groundwater dependent ecosystem management. Waterlines Report, Gov. of Australia, Canberra, Australia

  • Peake P, Fitzsimons J, Frood D, Mitchell M, Withers N, White M, Webster R (2011) A new approach to determining environmental flow requirements: sustaining the natural values of floodplains of the southern Murray-Darling Basin. Ecol Manag Restor 12:128–137. https://doi.org/10.1111/j.1442-8903.2011.00581.x

    Article  Google Scholar 

  • Pfautsch S, Dodson W, Madden S, Adams MA (2015) Assessing the impact of large-scale water table modifications on riparian trees: a case study from Australia. Ecohydrology 8:642–651. https://doi.org/10.1002/eco.1531

    Article  Google Scholar 

  • Productivity Commission (2003) Water rights arrangements in Australian and overseas: annex D, Queensland. Productivity Commission, Melbourne, Australia

  • Rohde MM, Froend R, Howard J (2017) A global synthesis of managing groundwater dependent ecosystems under sustainable groundwater policy. Groundwater 1–9. https://doi.org/10.1111/gwat.12511

  • Sahuquillo A, Lluria M (2003) Conjunctive use as potential solution for stressed aquifers: social constraints. In: Intensive use of ground water: challenges and opportunities, chap 7. In: Intensive use of groundwater. Balkema, Lisse, The Netherlands, pp 157–176

  • Saliba BC (1987) Do water markets “work”? Market transfers and trade-offs in the southwestern states. Water Resour Res 23:1113–1122. https://doi.org/10.1029/WR023i007p01113

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2001) Choosing appropriate technique for quantifying groundwater recharge. Hydrogeol J 10:18–39. https://doi.org/10.1007/s10040-0010176-2

    Article  Google Scholar 

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370

  • Schirmer M, Davis GB, Hoehn E, Vogt T (2012) GQ10 groundwater quality management in a rapidly changing world. J Contam Hydrol 127:1–2. https://doi.org/10.1016/j.jconhyd.2011.11.001

    Article  Google Scholar 

  • Schofield N, Burt A, Connell D, Printing CP (2003) Environmental water allocation: principles, policies and practices. Report PR030541, Land and Water Australia, Dept. of Agriculture and Water, Canberra, Australia

  • Schutten J, Verweij W, Hall A, Scheidleder A (2011) Technical report on groundwater dependent terrestrial ecosystems, Technical report no. 6. https://doi.org/10.2779/93018

  • Serov P, Kuginis L, Williams JP (2012) Risk assessment guidelines for groundwater dependent ecosystems, vol 1: the conceptual framework. NSW Gov., Sydney

  • Skurray JH, Roberts EJ, Pannell DJ (2012) Hydrological challenges to groundwater trading: lessons from south-west Western Australia. J Hydrol 412–413:256–268. https://doi.org/10.1016/j.jhydrol.2011.05.034

    Article  Google Scholar 

  • Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43. https://doi.org/10.1016/S0022-1694(00)00263-8

    Article  Google Scholar 

  • Sophocleous M, Koussis A, Martin JL, Perkins SP (1995) Evaluation of simplified stream–aquifer depletion models for water rights administration. Groundwater 33:579–588. https://doi.org/10.1111/j.1745-6584.1995.tb00313.x

    Article  Google Scholar 

  • South Australian Arid Lands Natural Resources Management Board (2009) Water allocation plan for the far north prescribed wells area. SA Arid Lands Natural Resources Management Board, Port Augusta, Australia

  • South Australian-Victoria Border Groundwaters Agreement Review Committee (2007) Management review tertiary limestone aquifer in province 2 of the designated area. Gov. of SA-Vic, Adelaide-Melbourne, Australia

  • Spalding CP, Khaleel R (1991) An evaluation of analytical solutions to estimate drawdowns and stream depletions by wells. Water Resour Res 27:597–609. https://doi.org/10.1029/91WR00001

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage. Trans Am Geophys Union 2:519–524. https://doi.org/10.4135/9781452218564.n218

    Article  Google Scholar 

  • Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:1–5. https://doi.org/10.1029/2009GL039401

    Article  Google Scholar 

  • Tomlinson M (2011) Ecological water requirements of groundwater systems: a knowledge and policy review. Waterlines Report, Gov. of Australia, Canberra, Australia

  • Wada Y, Van Beek LPH, Van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:1–5. https://doi.org/10.1029/2010GL044571

    Article  Google Scholar 

  • Werner AD, Alcoe DW, Ordens CM, Hutson JL, Ward JD, Simmons CT (2011) Current practice and future challenges in coastal aquifer management: flux-based and trigger-level approaches with application to an Australian case study. Water Resour Manag 25:1831–1853. https://doi.org/10.1007/s11269-011-9777-2

    Article  Google Scholar 

  • Werner AD, Zhang Q, Xue L, Smerdon BD, Li X, Zhu X, Yu L, Li L (2013) An initial inventory and indexation of groundwater mega-depletion cases. Water Resour Manag 27:507–533. https://doi.org/10.1007/s11269-012-0199-6

    Article  Google Scholar 

  • Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90:8995. https://doi.org/10.1029/JC090iC05p08995

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the MDBA-NCGRT Strategic Groundwater Research Partnership Steering Committee, in particular Peter Hyde, Sue Hamilton, and Ray Evans. Thanks to the Guillaume Bertrand and Yu-Li Wang for their review of the manuscript and valuable comments.

Funding

This work was funded by the Murray-Darling Basin Authority (MDBA)/National Centre for Groundwater Research and Training (NCGRT) Strategic Research Partnership.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saskia L. Noorduijn.

Appendix

Appendix

To investigate the impacts of the different management approaches, a numerical model was constructed using MODFLOW-NWT. The domain consisted of 1 layer (100 m thickness) with a cell size of 10 m × 10 m. The elliptical catchment is bounded by no flow boundaries with a constant head boundary on its left (Fig. 5). Uniform and isotropic hydraulic properties were used in the model: hydraulic conductivity of 1 m d−1 and specific yield of 0.2. Uniform recharge of 50 mm yr−1 was applied across the domain. The evapotranspiration (ET) package was used to simulate a terrestrial GDE near the centre of the catchment. This GDE had a maximum ET rate of 100 mm d−1 when the groundwater level was less than 5 m from the surface, the ET rate reduced linearly to zero from 5 to 10 m below surface. Initial groundwater level and constant head boundary were 95 m from the base of the aquifer. The steady-state head distribution is shown in Fig. 5.

Fig. 5
figure 5

Plan view of the model domain showing the steady-state groundwater levels (coloured contours). Boundary conditions are shown: no flow boundary (black line) and constant head boundary (blue line). The location of the terrestrial GDE is shown by the hashed circle, and the boundary of the buffer zone is indicated by the red circle. Eighteen wells (black and red dots) and one observation well (yellow dot) are shown. The three wells excluded from buffer zone simulations are shown in red

For the management scenarios, 18 wells were located within the catchment at various distances from the GDE. Four management scenarios where investigated using the model: (1) buffer zone approach, (2) combined buffer zone and volumetric approaches, (3) volumetric approach, and (4) a combined trigger level, buffer zone and volumetric approach. Abstraction rates for all scenarios followed the same structure; abstraction rates increase each year at the same rate (61,649 m3 yr−1) until the specified abstraction rate or a groundwater threshold was reached. The total abstraction volume was equally distributed across the wells. For the volumetric allocation scenario, all 18 wells were used, and the maximum abstraction volume was limited to 40% of annual recharge volume. For the buffer zone scenario, a 500-m buffer was placed around the GDE which excluded three wells from the simulation (red circles in Fig. 5). The maximum abstraction rate for the buffer zone scenario was set to 120% of annual recharge. For the trigger level scenario, an observation point was located in the GDE (yellow circle in Fig. 5); this was monitored every 5 years. If the groundwater level at the observation well fell by more than 0.5 m compared to the steady-state level, the abstraction rate of the following 5 years was reduced by 50%. This reduced abstraction rate was maintained until the groundwater level in the observation well recovered (e.g., groundwater level less than 0.5 m below steady-state level).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noorduijn, S.L., Cook, P.G., Simmons, C.T. et al. Protecting groundwater levels and ecosystems with simple management approaches. Hydrogeol J 27, 225–237 (2019). https://doi.org/10.1007/s10040-018-1849-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1849-4

Keywords

Navigation