Skip to main content
Log in

Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems

Revue : De la conceptualisation multi-échelles à un système de classification des écosystèmes continentaux dépendant des eaux souterraines

Revisión: De una conceptualización multiescala a un sistema de clasificación para ecosistemas dependientes de agua subterránea interior

综述:对内陆依赖地下水的生态系统的多尺度概念化及分类系统

Revisão: Da conceptualização multi-escala para um sistema de classificação de ecossistemas interiores dependentes de águas subterrâneas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Aquifers provide water, nutrients and energy with various patterns for many aquatic and terrestrial ecosystems. Groundwater-dependent ecosystems (GDEs) are increasingly recognized for their ecological and socio-economic values. The current knowledge of the processes governing the ecohydrological functioning of inland GDEs is reviewed, in order to assess the key drivers constraining their viability. These processes occur both at the watershed and emergence scale. Recharge patterns, geomorphology, internal geometry and geochemistry of aquifers control water availability and nutritive status of groundwater. The interface structure between the groundwater system and the biocenoses may modify the groundwater features by physicochemical or biological processes, for which biocenoses need to adapt. Four major types of aquifer-GDE interface have been described: springs, surface waters, peatlands and terrestrial ecosystems. The ecological roles of groundwater are conditioned by morphological characteristics for spring GDEs, by the hyporheic zone structure for surface waters, by the organic soil structure and volume for peatland GDEs, and by water-table fluctuation and surface floods in terrestrial GDEs. Based on these considerations, an ecohydrological classification system for GDEs is proposed and applied to Central and Western-Central Europe, as a basis for modeling approaches for GDEs and as a tool for groundwater and landscape management.

Résumé

Les aquifères fournissent eau, nutriments et énergie, selon des mécanismes variés, à beaucoup d’écosystèmes aquatiques et terrestres. Les écosystèmes dépendant des eaux souterraines (EDES) sont de plus en plus reconnus pour leur valeur écologique et socio-économique. Les connaissances actuelles sur les processus contrôlant le fonctionnement éco-hydrologique des EDES continentaux sont passées en revue, de façon à identifier les facteurs-clés qui conditionnent leur viabilité. Ces processus ont lieu à la fois à l’échelle du bassin versant et de l’émergence. Les types de recharge, la géomorphologie, la structure et la géochimie des aquifères contrôlent la disponibilité en eau nutritive des nappes. La structure de l’interface système souterrain-biocénoses peut modifier les caractéristiques des nappes du fait des processus physico-chimiques et biologiques, auxquels les biocénoses doivent s’adapter. Quatre types majeurs d’interface aquifère-EDES sont décrits : sources, eaux de surface, tourbières et écosystèmes terrestres. Le rôle écologique des eaux souterraines est conditionné par les caractéristiques morphologiques pour l’interface sources-EDES, par la structure de la zone hyporhéïque pour les eaux de surface, par la structure et le volume du sol organique pour l’interface tourbières-EDES et par la fluctuation de la surface libre et par les écoulements de surface dans les EDES terrestres. Sur la base de ces considérations, un système de classification éco-hydrologique pour les EDES est proposé et appliqué à l’Europe du Centre et du Centre-Ouest, comme fondement pour des modélisation des EDES et comme outil de gestion des eaux souterraines et des paysages.

Resumen

Los acuíferos proporcionan agua, nutrientes y energía con varios esquemas para muchos ecosistemas acuáticos y terrestres. Los ecosistemas dependientes del agua subterránea (GDEs) son cada vez más reconocidos por sus valores ecológicos y socioeconómicos. Se realiza una revisión del conocimiento actual de los procesos que gobiernan el funcionamiento ecohidrológico de los GDEs interiores, para evaluar los principales factores que limitan su viabilidad. Estos procesos ocurren tanto en escala de cuenca como de la emergencia. Los esquemas de la recarga, la geomorfología, la geometría interna y la geoquímica de los acuíferos controlan la disponibilidad del agua y el estado de los nutrientes del agua subterránea. La estructura de interfaz entre el sistema de agua subterránea y la biocenosis pueden modificar las características del agua subterránea por procesos fisicoquímicos y biológicos, para los cuales la biocenosis necesita adaptarse. Cuatro tipos principales de la interfaz de acuíferos GDEF han sido descriptos: manantiales, aguas superficiales, turberas y ecosistemas terrestres. Los roles ecológicos del agua subterránea están condicionados por las características morfológicas para los manantiales GDEs, por la estructura de la zona hiporreica para las aguas superficiales, por la estructura orgánica del suelo y por el volumen de los GDEs con turberas, y por la fluctuación de los niveles freáticos y las inundaciones de superficie en los GDEs terrestres. Basado en estas consideraciones se propone un sistema de clasificación ecohidrológico para los GDEs y es aplicado para el centro – oeste y el centro de Europa., como una base para modelar enfoques para los GDEs y como una herramienta para el manejo del agua subterránea y el paisaje.

摘要

含水层能够为许多水生和陆地生态系统提供水以及各种类型的营养和能量。依赖地下水的生态系统(GDEs)的生态及社会经济价值越来越被认可。本文综述了控制内陆GDEs生态水文功能的过程研究现状,从而评价限制其发展的主要驱动力。这些过程发生在流域及更大尺度上。含水层的补给类型、地形地貌、内部几何形状以及地球化学控制着水资源可利用量和地下水的营养状况。地下水系统及生物群落之间的界面结构可通过物理化学和生物过程改变地下水特征,并需要生物群落的适应。本文对四个主要类型的含水层—GDE界面进行描述;泉、地表水、沼泽、陆地生态系统。地下水的生态作用由形态学特征约束,对泉水GDEs而言,由伏流区结构约束,对地表水,由有机土壤结构和体积约束,对沼泽GDEs,由地下水位波动约束,对陆地GDEs由地表洪水约束。基于这些因素,本文提出一个GDEs生态水文分类系统,并应用到欧洲中部和中西部,从而为建立GDEs模型打下基础,为地下水及景观管理提供工具。

Resumo

Os aquíferos fornecem água, nutrientes e energia com vários padrões para muitos ecossistemas aquáticos e terrestres. Os ecossistemas dependentes das águas subterrâneas (EDAS) são crescentemente reconhecidos pelos seus valores ecológicos e socioeconómicos. Revê-se o conhecimento actual dos processos que determinam o funcionamento eco-hidrológico dos EDAS interiores de forma a avaliar os factores principais que condicionam a sua viabilidade. Estes processos ocorrem tanto à escala da bacia hidrográfica como à escala da emergência. Os padrões de recarga, geomorfologia, geometria interna e geoquímica dos aquíferos controlam a disponibilidade de água e o estado nutritivo das águas subterrâneas. A estrutura da interface entre o sistema de águas subterrâneas e as biocenoses pode modificar as características das águas subterrâneas por processos físico-químicos ou biológicos para os quais as biocenoses precisam de se adaptar. Descreveram-se quatro tipos principais de interface aquífero-EDAS: nascentes, águas superficiais, turfeiras e ecossistemas terrestres. O papel ecológico das águas subterrâneas está condicionado pelas características morfológicas no caso dos EDAS associados a nascentes, pela estrutura da zona hiporreica para as águas superficiais, pela estrutura e volume do solo orgânico no caso dos EDAS associados a turfeiras e pela flutuação do nível freático e das cheias de águas superficiais no caso dos EDAS terrestres. Com base nestas considerações, propõe-se um sistema de classificação ecohidrológica para os EDAS e faz-se a sua aplicação à Europa Central e Centro-ocidental como uma base para as abordagens de modelação de EDAS e como uma ferramenta para a gestão das águas subterrâneas e da paisagem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aeschimann D, Lauber K, Moser DM, Theurillat JP (2004) Flora alpina [Alpine flora]. Belin, Paris

  • Alfaro C, Wallace M (1994) Origin and classification of springs and historical review with current applications. Environ Geol 24(2):112–124

    Article  Google Scholar 

  • Amoros C, Petts GE (1993) Hydrosystèmes fluviaux [Fluvial hydrosystems]. Collection d’Ecologie, Masson, Paris

    Google Scholar 

  • Andrus RE (1986) Some aspects of Sphagnum ecology. Can J Bot 64:416–426

    Article  Google Scholar 

  • Baize D, Girard MC, Jabiol B, Rossignol JP, Eimberck M, Beaudou A (2009) Référentiel pédologique [Pedologic reference]. Editions Quae, Versailles, France, 480 pp

    Google Scholar 

  • Batelaan O, Smedt FD, Triest L (2003) Regional groundwater discharge: phreatophyte mapping, groundwater modelling and impact analysis of land-use change. J Hydrol 275(1–2):86–108

    Article  Google Scholar 

  • Bertrand G, Celle-Jeanton H, Laj P, Rangognio J, Chazot G (2008) Rainfall chemistry: long range transport versus below cloud scavenging: a two-year study at an inland station (Opme, France). J Atmos Chem 60(3):253–271

    Article  Google Scholar 

  • Boar RR, Lister DH, Clough WT (1995) Phosphorus loads in a small groundwater-fed river during the 1989–1992 East Anglian drought. Water Res 29(9):2167–2173

    Article  Google Scholar 

  • Boelter DH (1965) Hydraulic conductivity of peats. Soil Sci 100(4):227–231

    Article  Google Scholar 

  • Bornette G, Tabacchi E, Hupp C, Puijalon S, Rostanj C (2008) A model of plant strategies in fluvial hydrosystems. Freshw Biol 53(8):1692–1705

    Article  Google Scholar 

  • Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Ann Rev Ecol Syst 29:59–81

    Article  Google Scholar 

  • Boulton AJ, Fenwick GD, Hancock PJ, Harvey MS (2008) Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr Syst 22:103–116

    Article  Google Scholar 

  • Boulton AJ, Datry T, Kasahara T, Mutz M, Stanford JA (2010) Ecology and management of the hyporheic zone: stream–groundwater interactions of running waters and their floodplains. J N Am Benthol Soc 29:26–40

    Google Scholar 

  • Bravard JP, Gilvear DJ (1996) Hydrological and geomorphological structure of hydrosystems. In: Petts GE, Amoros C (eds) Fluvial hydrosystems. Chapman and Hall, London, pp 98–116

    Chapter  Google Scholar 

  • Brewer JS, Menzel T (2009) A method for evaluating outcomes of restoration when no reference sites exist. Restor Ecol 17(1):4–11

    Article  Google Scholar 

  • Brinson M (1993) A hydrogeomorphic classification for wetlands. Final report, technical report WRP-DE-4. US Army Corps of Engineers, Washinton DC. Available at: http://el.erdc.usace.army.mil/wetlands/pdfs/wrpde4.pdf. Cited 14 Dec 2010

  • Brown J, Wyers A, Aldous A, Bach L (2007) Groundwater and biodiversity conservation. The Nature Conservancy, Toronto, December 2007

  • Brown J, Bach L, Aldous A, Wyers A, DeGagné J (2010) Groundwater dependent ecosystems in Oregon: an assessment of their distribution and associated threats. Frontiers in Ecology and the Environment; e-View. doi:10.1890/090108

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33

    Article  Google Scholar 

  • Caldwell MM, Dawson DE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Article  Google Scholar 

  • Cantonati M (1998) Diatom communities of springs in the Southern Alps. Diatom Res 13(2):201–220

    Article  Google Scholar 

  • Cantonati M, Gerecke R, Bertuzzi E (2006) Springs of the Alps; sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562(1):59–96

    Article  Google Scholar 

  • Chambers PA, Prepas EE, Hamilton R, Bothwell ML (1991) Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol Appl 1:249–257

    Article  Google Scholar 

  • Chambers PA, Prepas EE, Gibson K (1992) Temporal and spatial dynamics in riverbed chemistry: the influence of flow and sediment composition. Can J Fish Aquat Sci 49(10):2128–2140

    Article  Google Scholar 

  • Chen X (2007) Hydrologic connections of a stream-aquifer-vegetation zone in south-central Platte River Valley, Nebraska. J Hydrol 333(2–4):554–568

    Article  Google Scholar 

  • Chimner RA, Cooper DJ (2004) Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado U.S.A. Plant Soil 260(1–2):225–236

    Article  Google Scholar 

  • Cooper DJ, MacDonald LH, Wenger SK, Woods SW (1998) Hydrologic restoration of a fen in Rocky Mountain national park, Colorado, U.S.A. Wetlands 18(3):335–345

    Article  Google Scholar 

  • Corinne Biotope Database (1991) Available at: http://in2000.kaliop.net/biotope/ibase.asp. Cited 14 December 2010

  • Cowardin LM Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deepwater habitats of the United States. U. S. Department of the Interior, Fish and Wildlife Service, Washington, D.C, Jamestown, ND (Version 04DEC98). Available at: http://www.npwrc.usgs.gov/resource/wetlands/classwet/index.htm. Cited 14 December 2010

  • Dahl M, Nilsson B, Langhoff JH, Refsgaard JC (2007) Review of classification systems and new multi-scale typology of groundwater/surface-water interaction. J Hydrol 344(1–2):1–16

    Article  Google Scholar 

  • Daily GC, Alexander S, Ehrlich PR, Goulder L, Lubchenco J, Matson PA, Mooney HA, Postel S, Schneider TSHD, Woodwell GM (1997) Ecosystem services: benefits supplied to human societies by natural ecosystems. Issues Ecol 2:1–16

    Google Scholar 

  • Danielopol D, Griebler C, Gunatilaka A, Notenboom J (2003) Present state and future prospects for groundwater ecosystems. Environ Conserv 30(2):104–130

    Article  Google Scholar 

  • Danielopol D, Gibert J, Griebler C, Gunatilaka A, Hahn HJ, Messana G, Notenboom J, Sket B (2004) The importance of incorporating ecological perspectives in groundwater management policy. Environ Conserv 31(3):185–189

    Article  Google Scholar 

  • Danielopol D, Griebler C, Gunatilaka A, Hahn HJ, Gibert J, Mermillod-Blondin G, Messana G, Notenboom J, Sket B (2008) Incorporation of groundwater ecology in environmental policy. In: Quevauviller P (ed) Groundwater science and policy. The Royal Society of Chemistry, 1st edn. RSC, London

    Google Scholar 

  • Datry T, Larned ST, Scarsbrook MR (2007) Responses of hyporheic assemblages to large scale variation in flow permanence and surface-subsurface exchange. Freshw Biol 52:1452–1462

    Article  Google Scholar 

  • Davies RB, Anderson DS (2001) Classification and distribution of freshwater peatlands in Maine. Northeast Naturalist 8(1):1–50

    Google Scholar 

  • Dawson FH (1976) The annual production of the aquatic macrophyte Ranunculus penicillatus var. calacareus. Aquat Bot 2:51–73

    Article  Google Scholar 

  • Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia 95:565–574

    Google Scholar 

  • De Jong J (1976) The purification of wastewater with the aid of rush or reed ponds. In: Biological control of water pollution. University of Pennsylvania, Philadelphia, pp 133–139

  • Delarze R, Gonseth Y (2008) Guide des milieu naturels de Suisse [Guide of the natural environment of Switzerland]. Rossolis, Bussigny, Switzerland, 424 pp

    Google Scholar 

  • Derx J, Blaschke AP, Blösch G (2010) Three-dimensional flow patterns at the river–aquifer interface: a case study at the Danube. Adv Water Resour 33(11):1375–1387

    Article  Google Scholar 

  • Dierkman M (1997) The differentiation of alliances in South Sweden. Folia Geobot Phytotax 32:193–205

    Article  Google Scholar 

  • Eamus D, Froend R (2006) Groundwater dependant ecosystems: the where, what and why of GDEs. Aust J Bot 54(2):91–96

    Article  Google Scholar 

  • Eamus D, Froend R, Loomes G, Hose G, Murray B (2006) A functional methodology for determining the groundwater regime needed to maintain the health of groundwater dependant vegetation. Aust J Bot 54(2):97–114

    Article  Google Scholar 

  • Environment Agency (2009) The hyporheic handbook: a handbook on the groundwater–surface water interface and hyporheic zone for environment managers. Science report: SC050070, 265 pp. Available at www.hyporheic.net/SCHO1009BRDX-e-e.pdf. Cited 14 December 2010

  • Environmental Protection Authority (2003) Consideration of subterranean fauna in groundwater and caves during environmental impact assessment in Western Australia. Guidance for the Assessment of Environmental Factors 54, EPA, Perth, Australia

  • Erman NA, Erman DC (1995) Spring permanence, Trichoptera species richness, and the role of drought. J Kansas Entomol Soc 68(2):50–64

    Google Scholar 

  • Euliss NH, LaBaugh JW, Fredrickson LH, Mushet DM, Laubhan MK, Swanson GA, Winter TC, Rosenberry DO, Nelson RD (2004) The wetland continuum: a conceptual framework for interpreting biological studies. Wetlands 24(2):448–458

    Article  Google Scholar 

  • European Parliament (1992) Directive 92/43/EC on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union. Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043:EN:NOT. Cited 14 December 2010

  • European Parliament (2000) Directive 2000/60/EC establishing a framework for Community action in the field of water policy (Water Framework Directive): Official Journal of the European Union. Available via http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2000L0060:20011216:EN:PDF. Cited 14 December 2010

  • European Parliament (2006) Directive 2006/118/EC on the protection of groundwater against pollution and deterioration: Official Journal of the European Union. Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:372:0019:0019:EN:PDF. Cited 14 December 2010

  • European Environment Agency (2010) European Nature Information System (EUNIS). Available at: http://eunis.eea.europa.eu/index.jsp. Cited 14 December 2010

  • Franklin P, Dunbar MJ, Whitehead P (2008) Flow controls on lowland river macrophytes: a review. Sci Total Environ 400(1–3):369–378

    Google Scholar 

  • Fraser CJD, Roulet NT, Lafleur M (2001) Groundwater flow patterns in a large peatland. J Hydrol 246(1–4):142–154

    Article  Google Scholar 

  • Garbey C, Thiébaut G, Muller S (2004) Morphological plasticity of a spreading aquatic macrophyte, Ranunculus peltatus, in response to environmental variables. Plant Ecol 173(1):125–137

    Article  Google Scholar 

  • Garbey C, Thiébaut G, Muller S (2006) An experimental study of the plastic responses of Ranunculus peltatus shrank to four environmental parameters. Hydrobiologia 570(1):41–46

    Article  Google Scholar 

  • Gibert J, Dole-Olivier MJ, Marmonier P, Vervier P (1990) Surface water-groundwater ecotones. In: Naiman RJ, Décamps H (eds) The ecology and management of aquatic-terrestrial ecotones. UNESCO and Parthenon, Paris and Carnforth, UK

    Google Scholar 

  • Gibert J, Brancelj A, Camacho A, Castellarini F, De Boyer C, Deharveng L, Dole-Olivier MJ, Douady C, Galassi D, Malard F, Martin P, Michel G, Sket B, Stoch F, Trontelj P, Valdecasas A (2005) Groundwater biodiversity protocols for the assessment and conservation of aquatic life in the subsurface (PASCALIS): overview and main results. In: Gibert (ed) World subterranean biodiversity. Proceedings of an international symposium. Université Claude Bernard Lyon I, Villeurbanne, France, December 2004

    Google Scholar 

  • Gobat JM, Aragno M, Matthey W (2004) The living soil. Science, Enfield, NS, Canada

    Google Scholar 

  • Gogo S, Shreeve TG, Pearce DME (2010) Geochemistry of three contrasting British peatlands: complex patterns of cation availability and implications for microbial metabolism. Geoderma 158(3–4):207–215

    Article  Google Scholar 

  • Goldscheider N, Hunkeler D, Rossi P (2006) Review: Microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol J 14(6):926–941

    Article  Google Scholar 

  • Goldscheider N, Pronk M, Zopfi J (2010) New insights into the transport of sediments and microorganisms in karst groundwater by continuous monitoring of particle-size distribution. Geol Croatica 63(2):137–142

    Google Scholar 

  • GSCHV (1998): Gewässerschutzverordnung [Swiss Water Ordinance] 814.201. Der Schweizer Bundesrat, Bern, Switzerland, 58 pp

  • Hahn HJ (2006) The GW-fauna-index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnologia 36(2):119–139

    Article  Google Scholar 

  • Hahn HJ (2009) A proposal for an extended typology of groundwater habitats. Hydrogeol J 17(1):77–81

    Article  Google Scholar 

  • Hajek M, Horsak M, Hajkova P, Dite D (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies: perspectives in plant ecology. Evol Syst 8(2):97–114

    Google Scholar 

  • Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13(1):98–111

    Article  Google Scholar 

  • Haslam SM (1987) River plants of Western Europe. Cambridge University Press, Cambridge, 512 pp

    Google Scholar 

  • Hayashi M, Rosenberry DO (2002) Effects of groundwater exchange on the hydrology and ecology of surface water. Ground Water 40(3):309–316

    Article  Google Scholar 

  • Hoehn E, Cirpka OA (2006) Assessing residence times of hyporheic ground water in two alluvial flood plains of the southern Alps using water temperature and tracers. Hydrol Earth Syst Sci 10(4):553–563

    Article  Google Scholar 

  • Huggenberger P, Beschta R, Woessner W (1998) Abiotic aspects of channels and floodplains in riparian ecology. Freshw Biol 40(3):407–425

    Article  Google Scholar 

  • Humphreys WF (2006) Aquifers: the ultimate groundwater-dependent ecosystems. Aust J Bot 54(2):115–132

    Article  Google Scholar 

  • Hutchinson GE (1970) The chemical ecology of three species of Myriophyllym (Angiospermae, Haloragacea). Limnol Oceanogr 15(1):1–5

    Google Scholar 

  • Hynes HBN (1983) Groundwater and stream ecology. Hydrobiologia 100:93–99

    Article  Google Scholar 

  • International Association of Hydrogeologists (2010) Krakow Declaration on the Protection of Groundwater Quality. Available at: http://aquadoc.typepad.com/files/iahkrakowdeclaration_finalsep2010.pdf. Cited 14 December 2010

  • Jacks G, Norrström AC (2004) Hydrochemistry and hydrology of forest riparian wetlands. For Ecol Manage 196:187–197

    Article  Google Scholar 

  • Janauer GA, Jolankai G (2008) Lotic vegetation processes. In: Harper D, Zalwski M, Pacini N (eds) Ecohydrology: processes, models and case studies—an approach to the sustainable management of water resources, CAB, Wallingford, UK, 391 pp

  • Jansson R, Laudon H, Johansson E, Augspurger C (2007) The importance of groundwater discharge for plant species number in riparian zones. Ecology 88(1):131–139

    Article  Google Scholar 

  • Jorga W, Weise G (1977) Biomasseentwicklung submerser Makrophyten in langsam fließender Gewässern in Beziehung zum Sauerstoffhaushalt [Biomass production of submersed Macrophytes in slowly flowing waters and relation to the oxygen balance]. Int Rev Ges Hydrobiol 62:209–234

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can J Fish Aquat Sci 106:110–127

    Google Scholar 

  • Kasahara T, Datry T, Mutz M, Boulton A (2009) Treating causes not symptoms: restoration of surface-groundwater interactions in rivers. Mar Freshw Biol 60(9):976–981

    Article  Google Scholar 

  • Kovalchik BL, Chitwood LA (1990) Use of geomorphology in the classification of riparian plant associations in mountainous landscapes of central Oregon, U.S.A. For Ecol Manage 33(34):405–418

    Article  Google Scholar 

  • Krause S, Bronstert A, Zehe E (2007) Groundwater–surface water interactions in a North German lowland floodplain: implications for the river discharge dynamics and riparian water balance. J Hydrol 347(3–4):404–417

    Article  Google Scholar 

  • Lenat DR (1983) Chironomids taxa richness: natural variation and use in pollution assessment. Freshw Invertebr Biol 2(4):192–198

    Article  Google Scholar 

  • Lyon J, Gross NM (2005) Patterns of plant diversity and plant–environmental relationships across three riparian corridors. For Ecol Manage 204(2–3):267–278

    Article  Google Scholar 

  • Mac Arthur RH, Wilson EO (2001) The theory of island biography. Princeton Landmarks in Biology edn., Princeton University Press, Princeton, NJ, 203 pp

  • Malard F, Tockner K, Dole-Olivier MJ, Ward JV (2002) A landscape perspective of surface-subsurface hydrological exchanges in river corridors. Freshw Biol 47:621–640

    Article  Google Scholar 

  • Malcolm IA, Soulsby C, Youngson AF, Hannah DM, McLaren IS, Thorne A (2004) Hydrological influences on hyporheic water quality: implications for salmon survival. Hydrol Proc 18:1543–1560

    Google Scholar 

  • Malcolm IA, Soulsby C, Youngson AF, Tetzlaff D (2009) Fine scale variability of hyporheic hydrochemistry in salmon spawning gravels with contrasting groundwater/surface-water interactions. Hydrogeol J 17(1):161–174

    Article  Google Scholar 

  • Malmer N (1986) Vegetational gradients in relation to environmental conditions in northwestern European mires. Can J Bot 64(2):375–383

    Article  Google Scholar 

  • Malmer N, Albinsson C, Svensson BM, Wallen B (2003) Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos 100(3):469–482

    Article  Google Scholar 

  • Meinzer OE (1923) Outline of ground-water hydrology, with definitions. US Geol Surv Water Suppl Pap 114 494

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: wetlands and water. Island, Washington, DC. Available at: http://www.millenniumassessment.org/documents/document.358.aspx.pdf. Cited 14 December 2010

  • Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. Reinhold, New York, 722 pp

    Google Scholar 

  • Moore PD, Bellamy DJ (1974) Peatlands. Springer, New York, 221 pp

    Google Scholar 

  • Mori N, Brancelj A (2006) Macroinvertebrate communities of karst springs of two river catchments in the Southern Limestone Alps (the Julian Alps, NW Slovenia). Aquat Ecol 40:69–83

    Article  Google Scholar 

  • Moyle JB (1945) Some chemical factors influencing the distribution of aquatic plants in Minnesota. Am Midl Nat 34(2):402–420

    Article  Google Scholar 

  • Mulholland PJ, Webster JR (2010) Nutrient dynamics in streams and the role of J-NABS. J N Am Benthol Soc 29(1):100–117

    Google Scholar 

  • Naqinezhad A, Hamzeh’ee B, Attar F (2008) Vegetation–environment relationships in the alderwood communities of Caspian lowlands, N. Iran (toward an ecological classification). Flora 203(7):567–577

    Article  Google Scholar 

  • National Wetlands Working Group (1997) The Canadian wetland classification system. 2nd edn. Wetlands Research Centre, University of Waterloo, Waterloo, ON, 68 pp. Available at: http://www.portofentry.com/Wetlands.pdf. Cited 14 December 2010

  • Nicol JM, Ganf GG, Pelton GA (2003) Seed banks of a southern Australian wetland: the influence of water regime on the final floristic composition. Plant Ecol 168:191–205

    Article  Google Scholar 

  • Nilsson C, Andersson E, Merritt M, Johansson ME (2002) Differences in riparian flora between riverbanks and river lakeshores explained by dispersal traits. Ecology 83(10):2878–2887

    Article  Google Scholar 

  • Novitzki RP (1979) Hydrologic characteristics of Wisconsin’s wetlands and their influence on floods, stream flow, and sediment. In: Greeson PE, Clark JR (eds) Wetland functions and values: the state of our understanding. American Water Resources, Minneapolis, MN, 674 pp

    Google Scholar 

  • Pellerin S, Lagneau LA, Lavoie M, Larocque M (2009) Environmental factors explaining the vegetation patterns in a temperate peatland. CR Biol 332(8):720–731

    Article  Google Scholar 

  • Perrin J, Jeannin PY, Zwahlen F (2003) Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland. J Hydrol 279(1–4):106–124

    Article  Google Scholar 

  • Pinay G, Décamps H, Chauvet E, Fustec E (1990) Functions of ecotones in fluvial systems. In: Naiman R, Décamps H (eds) The ecology and management of aquatic-terrestrial ecotones. Man and the Biosphere Series, UNESCO, Paris, pp 141–169

  • Pinay G, Black VJ, Planty-Tabacchi AM, Gumiero B, Décamps H (2000) Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50:163–182

    Article  Google Scholar 

  • Pipan T (2005) Epikarst: a promising habitat. Copepod fauna, its diversity and ecology: a case study from Slovenia (Europe). Karst Research Institute at ZRC SAZU, ZRC, Ljubljana, Slovenia, 101 pp

    Google Scholar 

  • Pitlo RH, Dawson FH (1993) Flow-resistance of aquatic weeds. In: Pieterse AH, Murphy KJ (eds) Aquatic Weeds: the Ecology and Management of Nuisance Aquatic Vegetation. Oxford University Press, Oxford, pp 74–84

    Google Scholar 

  • Plénet S, Gibert J, Marmonnier P (1995) Biotic and abiotic interactions between surface and interstitial systems in rivers. Ecography 18:296–309

    Article  Google Scholar 

  • Pollard RA (1955) Measuring seepage through salmon spawning gravel. J Fish Res Board Can 12:706–741

    Article  Google Scholar 

  • Poole GC (2010) Stream hydrogeomorphology as a physical science basis for advances in stream ecology. J N AM Benthol Soc 29(1):12–25

    Google Scholar 

  • Price J (1992) Blanket bog in Newfoundland: 2, hydrological processes. J Hydrol 135(1–4):103–119

    Article  Google Scholar 

  • Price J, Heathwaite AL, Baird AJ (2003) Hydrological processes in abandoned and restored peatlands: An overview of management approaches. Wetl Ecol Manage 11(1–2):65–83

    Article  Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J, Zwahlen F (2009) Percolation and particle transport in the unsaturated zone of a karst aquifer. Ground Water 47(3):361–369

    Article  Google Scholar 

  • Reed PB (1988) National list of plant species that occur in wetlands. US Fish Wildl Serv Biol Rep 88(24):244

    Google Scholar 

  • Rhode S, Kienast F, Bürgi M (2004) Assessing the restoration success of river widening: a landscape approach. Environ Manage 34(4):574–589

    Article  Google Scholar 

  • Riis T, Biggs BJF (2003) Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnol Oceanogr 48(4):1488–1497

    Article  Google Scholar 

  • Robe WE, Griffith H (1998) Adaptations for an amphibious life: change in leaf morphology, growth rate, C and N investment, and reproduction during adjustment to emersion by the freshwater macrophyte Litorella uniflora. New Phytol 140(1):9–23

    Article  Google Scholar 

  • Ronkanen AK, Klove B (2005) Hydraulic soil properties of peatlands treating municipal wastewater and peat harvesting runoff. SUO Peat Mires 56(2):43–56

    Google Scholar 

  • Sanchez-Perez JM, Tremolières M (1997) Variation in nutrient levels of the groundwater in the Upper Rhine alluvial forests as a consequence of hydrological regime and soil texture. Global Ecol Biogeogr Lett 6:211–217

    Article  Google Scholar 

  • Sanchez-Perez JM, Tremolières M (2003) Change in groundwater chemistry as a consequence of suppression of floods: the case of the Rhine floodplain. J Hydrol 270(1–2):89–104

    Article  Google Scholar 

  • Scarsbrook M, Barquin J, Gray DP (2007) New Zealand coldwater springs and their biodiversity. Science for Conservation 278. Department of Conservation, Wellington, New Zealand, 72 pp

    Google Scholar 

  • Schade J, Welter J, Martí E, Grimm N (2004) Hydrologic exchange and N uptake by riparian vegetation in an arid-land stream. J N AM Benthol Soc 24(1):19–28

    Article  Google Scholar 

  • Schneider S (2007) Macrophyte trophic indicator values from a European perspective. Limnol Ecol Manage Inland Waters 37(4):281–289

    Article  Google Scholar 

  • Schneider S, Melzer A (2003) The trophic index of macrophytes (TIM): a new tool for indicating the trophic state of running waters. Int Rev Hydrobiol 88(1):49–67

    Article  Google Scholar 

  • Schnitzler A (1997) River dynamics as a forest process: interactions between fluvial systems and alluvial forests in large European river plains. Botan Rev 63(1):40–64

    Article  Google Scholar 

  • Schnitzler-Lenoble A (2007) Forêts alluviales d’Europe: ecologie, biogéographie, valeur intrinsèque [Floodplain forests in Europe: ecology, biogeography, intrinsic value], Lavoisier, Cachan, France, 400 pp

  • Seddon B (1972) Aquatic macrophytes as limnological indicators. Freshw Biol 2(2):107–130

    Article  Google Scholar 

  • Shotyk W, Steinmann P (1994) Pore-water indicators of rainwater-dominated versus groundwater dominated peat bog profiles (Jura Mountains, Switzerland). Chem Geol 116(1–2):137–146

    Article  Google Scholar 

  • Sinclair Knight Metz (2001) Environmental water requirements to maintain groundwater dependent ecosystems. Commonwealth of Australia, Canberra

    Google Scholar 

  • Smith H, Wood PJ (2002) Flow permanence and macroinvertebrate community variability in limestone spring systems. Hydrobiologia 487:45–58

    Article  Google Scholar 

  • Smith H, Wood PJ, Gunn J (2003) The influence of habitat structure and flow permanence on invertebrate communities in karst spring systems. Hydrobiologia 510:53–66

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of science. Hydrogeol J 10(1):52–67

    Article  Google Scholar 

  • Soulsby C, Malcolm IA, Tetzlaff D, Youngson AF (2009) Seasonal and inter-annual variability in hyporheic water quality revealed by continuous monitoring in a salmon spawning stream. River Res Appl 25(10):1304–1319

    Google Scholar 

  • Spencer W, Bowes G (1993) Ecophysiology of the world’s most troublesome aquatic weeds. In: Pieterse AJ, Murphy KJ (eds) Aquatic weeds: the ecology and management of nuisance aquatic vegetation. Oxford University Press, New York, pp 9–73

  • Springer AE, Stevens LE (2009) Spheres of discharge of springs. Hydrogeol J 17(1):83–93

    Article  Google Scholar 

  • Sraj-Krzic N, Gaberscik A (2005) Photochemical efficiency of amphibious plants in an intermittent lake. Aquat Bot 83(4):281–288

    Article  Google Scholar 

  • Stanford JA, Ward JV (1992) Management of aquatic resources in large catchments: recognizing interactions between ecosystem connectivity and environmental disturbance. In: Naiman RJ (ed) Watershed management. Springer, New York, pp 91–124

    Chapter  Google Scholar 

  • Steiger J, Tabacchi E, Dufour S, Corenblit D, Peiry JL (2005) Hydrogeomorphic processes affecting riparian habitat within alluvial channel–floodplain river systems: a review for the temperate zone. River Res Appl 21(7):719–737

    Article  Google Scholar 

  • Steinmann P (1915) Praktikum der Süßwasserbiologie [Methods in Freshwater biology. Bornträger, Berlin, 184 pp

  • Steube C, Richter S, Griebler C (2009) First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeol J 17(1):23–35

    Article  Google Scholar 

  • Stevens LE, Springer AE (2004) A conceptual model of springs ecosystem ecology. National Park Service, Flagstaff, AZ. Available at: http://www1.nature.nps.gov/im/units/scpn/phase2.htm. Cited 14 December 2010

  • Storey RG, Williams DD, Fulthorpe RR (2004) Nitrogen processing in the hyporheic zone of a pastoral stream. Biogeochemistry 69(3):285–313

    Article  Google Scholar 

  • Strand JA, Weisner SEB (2001) Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum). J Ecol 89(2):166–175

    Article  Google Scholar 

  • Strohbach M, Audorff V, Beierkuhnlein C (2009) Drivers of plant species composition in siliceous spring ecosystems: groundwater chemistry, catchment traits or spatial factors? J Limnol 68(2):375–384

    Article  Google Scholar 

  • Tahvanainen T (2004) Water chemistry of mires in relation to the poor–rich vegetation gradient and contrasting geochemical zones of the north-eastern Fennoscandian Shield. Folia Geobot 39(4):353–369

    Article  Google Scholar 

  • Tessier C, Maire A, Aubin A (1981) Etude de la végétation des zones riveraines de l’archipel des Cent-îles du fleuve Saint-Laurent, Québec [Study of the riparian vegetation of the archipelago of the ‘hundred islands’ of the St Lawrence River, Quebec]. Can J Bot 59(8):1526–1536

    Article  Google Scholar 

  • Thienemann A (1922) Hydrobiologische Untersuchungen an Quellen (I-IV) [Hydrobiological studies resources]. Archiv Hydrobiol 14:151–190

    Google Scholar 

  • Tockner K, Malard F, Ward JV (2000) An extension of the flood pulse concept. Hydrol Proc 14(16):2861–2883

    Article  Google Scholar 

  • Tomlinson M, Boulton AJ (2010) Ecology and management of subsurface groundwater dependent ecosystems in Australia: a review. Mar Freshw Res 61:936–949

    Article  Google Scholar 

  • Toth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68(16):4785–4812

    Google Scholar 

  • US Geological Survey (1999) Ground Water. General Interest Publication, US Geological Survey, Reston, Virginia, 1999. Available via: http://pubs.usgs.gov/gip/gw/. Cited 14 December 2010

  • Van der Kamp G (1995) The hydrogeology of springs in relation to the biodiversity of spring fauna: a review. J Kansas Entomol Soc 68(2):4–17

    Google Scholar 

  • Van Loon AH, Schot PP, Griffioen J, Bierkens MFP, Batelaan O, Wassen MJ (2009) Throughflow as a determining factor for habitat contiguity in a near-natural fen. J Hydrol 379(1–2):30–40

    Article  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37(1):130–137

    Article  Google Scholar 

  • Verhoeven JTA, van Beck S, Dekkler M, Storm W (1983) Nutrient dynamics in small mesotrophic fens surrounded by cultivated land. I. Productivity and nutrient uptake by the vegetation in relation to the flow of eutrophicated ground water. Oecologia 60(1):25–33

    Article  Google Scholar 

  • Vogt T, Schneider P, Hahn L, Cirpka OA (2010) Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling. J Hydrol 380(1–2):154–164

    Article  Google Scholar 

  • Von Fumetti S, Nagel P, Scheifhacken N, Baltes B (2006) Factors governing macrozoobenthic assemblages in perennial springs in north-western Switzerland. Hydrobiologia 568:467–475

    Article  Google Scholar 

  • Ward JV (1998) Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biol Conserv 83(3):269–278

    Article  Google Scholar 

  • Ward JW, Bretschko G, Brunke M, Danielopol D, Gibert J, Gonser T, Hildrew AG (1998) The boundaries of river systems: the Metazoan perspective. Freshw Biol 40:531–569

    Article  Google Scholar 

  • Ward JV, Tockner K, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshw Biol 47:517–539

    Article  Google Scholar 

  • Wheeler BD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203

    Article  Google Scholar 

  • White DS (1993) Perspectives on defining and delineating hyporheic zones. J N Am Benthol Soc 12(1):61–69

    Article  Google Scholar 

  • Williams D, Hynes HB (1976) The ecology of temporary streams. I. The faunas of two Canadian streams. Int Revue Ges Hydrobiol 61(6):761–787

    Article  Google Scholar 

  • Whigham DF, Simpson RL (1976) The potential use of freshwater tidal marshes in the management of water quality in the Delaware River. In: Toubier J, Pierson P (eds) Biological control of water pollution, University of Pennsylvania Press, Philadelphia, pp 174–186

  • Winter TC (2001) Ground water and surface water: the linkage tightens, but challenges remain. Hydrol Proc 15:3605–3606

    Article  Google Scholar 

  • Younger PL (2007) Groundwater in the environment. Blackwell, London, 318 pp

  • Youngson AF, Malcolm IA, Thorley JL, Bacon PJ, Soulsby C (2004) Long residence groundwater effects on incubating salmonid eggs: low hyporheic oxygen impairs embryo development. Can J Fish Aquat Sci 61(12):2278–2287

    Article  Google Scholar 

  • Zhao M, Zeng C, Liu Z, Wang S (2010) Effect of different land use/land cover on karst hydrogeochemistry: a paired catchment study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China. J Hydrol 388(1–2):121–130

    Article  Google Scholar 

Download references

Acknowledgements

The work was carried out as part of the GENESIS project on groundwater systems (http:/www.thegenesisproject.eu) financed by the European Commission 7FP large scale project contract 226536. The authors are grateful to Dr. Jari Ilmonen for his comments on this work and to Jessica Meeks for her assistance in improving the quality of the text. We also thank Dr. Hans Jürgen Hahn and one anonymous reviewer for their remarks which allowed enrichment of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bertrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, G., Goldscheider, N., Gobat, JM. et al. Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems. Hydrogeol J 20, 5–25 (2012). https://doi.org/10.1007/s10040-011-0791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0791-5

Keywords

Navigation