Skip to main content

Advertisement

Log in

Numerical modelling assessment of climate-change impacts and mitigation measures on the Querença-Silves coastal aquifer (Algarve, Portugal)

Evaluation des impacts du changement climatique et des mesures de mitigation sur l’aquifère côtier de Querença-Silves (Algarve, Portugal) à partir de modélisation numérique

Evaluación de modelos numéricos de los impactos del cambio climático y las medidas de mitigación en el acuífero costero de Querença-Silves (Algarve, Portugal)

数值模拟评价气候变化对(葡萄牙阿尔加伟)Querença-Silves沿海含水层的影响及减缓措施

Aplicação de modelos numéricos na análise do impacto de alterações climáticas e medidas de mitigação no aquífero costeiro Querença-Silves (Algarve, Portugal)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Predicted changes in climate will lead to seawater intrusion in the Querença-Silves (QS) coastal aquifer (south Portugal) during the coming century if the current water-resource-management strategy is maintained. As for much of the Mediterranean, average rainfall is predicted to decrease along with increasing seasonal and inter-annual variability and there is a need to understand how these changes will affect the sustainable use of groundwater resources. A density-coupled flow and transport model of the QS was used to simulate an ensemble of climate, water-use and adaptation scenarios from 2010 to 2099 taking into account intra- and inter-annual variability in recharge and groundwater use. By considering several climate models, bias correction and recharge calculation methods, a degree of uncertainty was included. Changes in rainfall regimes will have an immediate effect on groundwater discharge; however, the effect on saltwater intrusion is attenuated by the freshwater–saltwater interfaces’ comparatively slow rate of movement. Comparing the effects of adaptation measures demonstrates that the extent of intrusion in the QS is controlled by the long-term water budget, as the effectiveness of both demand and supply oriented measures is proportional to the change in water budget, and that to maintain the current position, average groundwater discharge should be in the order of 50 × 106 m3 yr−1.

Résumé

Les changements climatiques prévus vont engendrer des intrusions salines dans l’aquifère côtier de Querença-Silves (QS) (Sud du Portugal) au cours du siècle à venir si la stratégie actuelle de gestion de la ressource en eau est. maintenue. Comme pour la majorité de la Méditerranée, il est. prévu que les précipitations moyennes diminuent et que la variabilité saisonnière et interannuelle augmente; il est. nécessaire de comprendre comment ces changements vont affecter l’utilization durable des ressources en eaux souterraines. Un modèle couplé d’écoulement densitaire et du transport du QS a été utilisé pour simuler un ensemble de scénarios climatiques, d’utilization d’eau et d’adaptation de 2010 à 2099 prenant en considération la variabilité intra- et interannuelle de la recharge et l’utilization des eaux souterraines. En considérant plusieurs modèles climatiques, la correction des biais et des méthodes de calcul de la recharge, un degré d’incertitude a été intégré. Les modifications des régimes des précipitations auront un effet immédiat sur les décharges des eaux souterraines, cependant l’effet sur les intrusions salines est. atténué par le faible déplacement des interfaces eaux douces–eaux salées en comparaison. La comparaison des effets des mesures d’adaptation démontre que l’extension de l’intrusion dans le QS est. contrôlée par le bilan hydrologique à long terme, du fait que l’efficacité à la fois des mesures orientées demandes et approvisionnement est. proportionnelle au changement du budget hydrologique, et que pour maintenir la position actuelle, la décharge moyenne des eaux souterraines devrait être de l’ordre de 50 × 106 m3 an−1.

Resumen

Los cambios previstos en el clima durante el próximo siglo conducirán a la intrusión de agua de mar en el acuífero costero de Querença-Silves (QS) (sur de Portugal) si se mantiene la actual estrategia de gestión de los recursos hídricos. Al igual que en gran parte del Mediterráneo, se pronostica que disminuirá la precipitación media junto con el aumento de la variabilidad estacional e interanual y es necesario comprender cómo afectarán estos cambios en el uso sostenible de los recursos hídricos subterráneos. Se utilizó un modelo acoplado de densidad de flujo y transporte del QS para simular un conjunto de escenarios climáticos, de uso y adaptación de 2010 a 2099, teniendo en cuenta la variabilidad intra e interanual de la recarga y el uso del agua subterránea. Al considerar varios modelos de clima, corrección de sesgo y métodos de cálculo de recarga, se incluyó un grado de incertidumbre. Los cambios en los regímenes de lluvia tendrán un efecto inmediato en la descarga de agua subterránea, sin embargo el efecto sobre la intrusión de agua salada es atenuado por la velocidad comparativamente lenta de las interfaces de agua dulce–agua salada. La comparación de los efectos de las medidas de adaptación demuestra que el grado de intrusión en el QS está controlado por el balance hídrico a largo plazo, ya que la eficacia de las medidas orientadas tanto a la demanda como a la oferta es proporcional al cambio en el balance hídrico y a la actual posición, la descarga media de agua subterránea debería ser del orden de 50 × 106m3año−1.

摘要

如果维持目前的水资源管理策略,在未来的下一世纪,预测的气候变化将导致(葡萄牙南部)Querença-Silves沿海含水层海水入侵。在地中海大部,预计平均降水量降低,但季节性和年际变异性增加,需要了解这些变化是怎样影响地下水资源的可持续利用。利用Querença-Silves沿海含水层密度-耦合水流和传输模型模拟了2010–2099年气候、水利用和适用方案的整体情况,考虑了补给和地下水利用年内和年际的变异性。通过考虑几个气候模型、偏见校正和补给计算方法,包括了不确定性程度。降雨变化对地下水排泄有直接影响,然而,由于淡水–咸水界面水流运移速度比较低,对海水入侵的影响减弱。通过比较适应措施的影响说明,Querença-Silves沿海含水层的入侵范围受长期水量平衡的控制,因为,供需倾向的措施有效性与水量平衡成正比,还说明为了维持目前的状况,平均地下水排泄量应该大约为50 × 106 m3 yr−1

Resumo

Alterações previstas no clima irão causar intrusão salina no aquífero costeiro Querença-Silves (QS), no sul de Portugal, durante o próximo século se a estratégia de gestão de recursos hídricos atual for mantida. Tal como para a maior parte do Mediterrâneo, está previsto uma redução da precipitação média juntamente com um aumento da variabilidade sazonal e interanual e é necessário compreender o impacto destas alterações no uso sustentável de recursos hídricos subterrâneos. Um modelo de escoamento e transporte de densidade variável do QS foi aplicado na simulação de um conjunto de cenários climáticos, uso da água e adaptação para o período entre 2010 e 2099, tomando em conta a variabilidade inter e intra-anual da recarga e uso da água. Aplicando vários modelos climáticos, métodos de correção e de cálculo da recarga permitiu-se incluir uma gama de incertezas nos resultados. Alterações nos regimes de precipitação irão ter um impacto imediato na descarga de água, no entanto o efeito na intrusão salina é atenuado pelo movimento relativamente lento da interface água doce–água salgada. Comparando os efeitos das medidas de adaptação demonstra-se que a extensão da intrusão no QS é controlada pelo balanço hídrico a longo prazo, dado que a eficácia de medidas aplicadas, quer sobre a demanda quer sobre a oferta, é proporcional à alteração no balanço hídrico, e que para manter a posição atual, a descarga de águas subterrâneas deverá ser mantida em média na ordem de 50 × 106 m3 ano−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abarca E, Carrera J, Sánchez-Vila X, Voss CI (2007) Quasi-horizontal circulation cells in 3D seawater intrusion. J Hydrol 339:118–129. doi:10.1016/j.jhydrol.2007.02.017

    Article  Google Scholar 

  • Almeida C, Mendonça JJL, Jesus MR, Gomes AJ (2000) Sistemas Aquíferos de Portugal Continental [Aquifer systems in continental Portugal]. INAG, Lisbon

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. American Elsevier, New York

  • Burnett WC, Aggarwal PK, Aureli A et al (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543. doi:10.1016/j.scitotenv.2006.05.009

    Article  Google Scholar 

  • Carneiro JF, Boughriba M, Correia A et al (2010) Evaluation of climate change effects in a coastal aquifer in Morocco using a density-dependent numerical model. Environ Earth Sci 61:241–252. doi:10.1007/s12665-009-0339-3

    Article  Google Scholar 

  • Chang SW, Clement TP (2012) Experimental and numerical investigation of saltwater intrusion dynamics in flux-controlled groundwater systems. Water Resour Res 48, W09527. doi: 10.1029/2012WR012134

  • Chang SW, Clement TP, Simpson MJ, Lee K-K (2011) Does sea-level rise have an impact on saltwater intrusion? Adv Water Resour 34:1283–1291. doi:10.1016/j.advwatres.2011.06.006

    Article  Google Scholar 

  • Costa L, Monteiro JP, Oliveira M et al (2015a) Modelling contributions of the local and regional groundwater flow of managed aquifer recharge activities at Querença-Silves aquifer system. EGU Gen. Assem. 2015, P 11930, Vienna, 12–17 April 2015

  • Costa LRD, Monteiro JP, Oliveira MM,et al (2015b) Interpretation of an injection test in a large diameter well in south Portugal and contribution to the understanding of the local hydrogeology. 10 Semin. Sobre Águas Subterrâneas 10, APRH, Evora, Portugal, April 2015, pp 2013–2016

  • Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10:254–277. doi:10.1007/s10040-002-0188-6

    Article  Google Scholar 

  • Diersch HJG (2014) FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. doi:10.1007/978-3-642-38739-5

  • Diersch H-JG, Kolditz O (1998) Coupled groundwater flow and transport: 2. thermohaline and 3D convection systems. Adv Water Resour 21:401–425. doi:10.1016/S0309-1708(97)00003-1

    Article  Google Scholar 

  • Doherty J (2002) Model-independent parameter estimation, 4th edn. Watermark, Brisbane, Australia

    Google Scholar 

  • Estrela T, Marcuello C, Iglesias A (1996) Water resources problems in southern Europe. Copenhagen, Denmark

    Google Scholar 

  • Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Chang 2:342–345. doi:10.1038/nclimate1413

    Article  Google Scholar 

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955–1974. doi:10.1029/92WR00607

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734

    Article  Google Scholar 

  • Goderniaux P, Brouyère S, Blenkinsop S et al (2011) Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios. Water Resour Res 47, W12516. doi: 10.1029/2010WR010082

  • Green NR, MacQuarrie KTB (2014) An evaluation of the relative importance of the effects of climate change and groundwater extraction on seawater intrusion in coastal aquifers in Atlantic Canada. Hydrogeol J 22:609–623. doi:10.1007/s10040-013-1092-y

    Article  Google Scholar 

  • Green TR, Taniguchi M, Kooi H et al (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405:532–560. doi:10.1016/j.jhydrol.2011.05.002

    Article  Google Scholar 

  • Holman IP (2006) Climate change impacts on groundwater recharge: uncertainty, shortcomings, and the way forward? Hydrogeol J 14:637–647. doi:10.1007/s10040-005-0467-0

    Article  Google Scholar 

  • Holman IP, Allen DM, Cuthbert MO, Goderniaux P (2012) Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeol J 20:1–4. doi:10.1007/s10040-011-0805-3

    Article  Google Scholar 

  • Hugman R, Stigter TY, Monteiro JP (2013) The importance of temporal scale when optimising abstraction volumes for sustainable aquifer exploitation: a case study in semi-arid South Portugal. J Hydrol 490:1–10. doi:10.1016/j.jhydrol.2013.02.053

    Article  Google Scholar 

  • Hugman R, Stigter TY, Monteiro JP, Nunes L (2012) Influence of aquifer properties and the spatial and temporal distribution of recharge and abstraction on sustainable yields in semi-arid regions. Hydrol Process 26:2791–2801. doi:10.1002/hyp.8353

    Article  Google Scholar 

  • INAG (2005) Relatório Síntese Sobre a Caracterização das Regiões Hidrográficas Prevista na Directiva-Quadro da Àgua [Report on the characterization of the hydrographic regions as per the Water Framework Directive]. INAG, Lisbon, Portugal

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability—part A, global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva. doi: 10.1016/j.renene.2009.11.012

  • Jackson CR, Meister R, Prudhomme C (2011) Modelling the effects of climate change and its uncertainty on UK chalk groundwater resources from an ensemble of global climate model projections. J Hydrol 399:12–28. doi:10.1016/j.jhydrol.2010.12.028

    Article  Google Scholar 

  • Kiraly L (1975) Rapport sur l’état actuel des connaissances dans le domaine des caractères physiques des roches karstiques [Report on the present knowledge on the physical characteristics of karstic rocks]. In: Burger A, Dubertret L (eds) Hydrogeology of karstic terrains. International Association of Hydrogeologists (IAH), Paris, France, pp 53–67

  • Kolditz O, Ratke R, Dierschb HG, Zielke W (1998) Coupled groundwater flow and transport: 1. verification of variable density flow and transport models. Adv Water Resour 21(1):27–46

  • Kopsiaftis G, Mantoglou A, Giannoulopoulos P (2009) Variable density coastal aquifer models with application to an aquifer on Thira Island. Desalination 237:65–80. doi:10.1016/j.desal.2007.12.023

    Article  Google Scholar 

  • Leitão TE, Lobo-Ferreira JP, Carvalho T et al (2014) MARSOL : demonstrating managed aquifer recharge as a solution to water scarcity and drought. 10th Semin. Sobre Águas Subterrâneas, APRH, Evora, Portugal, April 2015, 4 pp

    Google Scholar 

  • Loáiciga HA, Pingel TJ, Garcia ES (2012) Sea water intrusion by sea-level rise: scenarios for the 21st century. Ground Water 50:37–47. doi:10.1111/j.1745-6584.2011.00800.x

    Article  Google Scholar 

  • Manuppella G (1992) Notícia Explicativa da Carta geológica da região do Algarve (escala 1/100000) [Explanatory note of the geological map of the Algarve region (scale 1/100000]. Serv Geol Portugal, Lisbon

  • MED-EUWI (2007) Mediterranean groundwater report: technical report on groundwater management in the Mediterranean and the Water Framework Directive. MED-EUWI, Athens

  • Michael HA, Mulligan AE, Harvey CF (2005) Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436:1145–1148. doi:10.1038/nature03935

    Article  Google Scholar 

  • Monteiro JP, Costa MS (2004) Dams, groundwater modelling and water management at the regional scale in a coastal Mediterranean area (the southern Portugal region–Algarve). Larhyss J 3:157–169

    Google Scholar 

  • Monteiro JP, Oliveira MM, Costa JP (2007a) Impact of the replacement of groundwater by dam waters in the Albufeira-Ribeira de Quarteira and Quarteira coastal aquifers. XXXV AIH Congr. Groundw. Ecosyst. Lisbon, Portugal, September 2007, pp 489–490

  • Monteiro JP, Ribeiro L, Martins J (2007b) Modelação Matemática do Sistema Aquífero Querença-Silves. Relatório Final. Validação e Análise de Cenários Relatório Técnico [Mathematical modeling of Querença-Silves Aquifer System. Final report. Validation and scenario analysis] Technical report, Instituto Superior Técnico, Lisbon, Portugal

  • Monteiro JP, Vieira J, Nunes L, Younes F (2006) Inverse calibration of a regional flow model for the Querenca-Silves Aquifer System. Int. Congr. Integr. Water Resour. Manag. Challenges Sustain. Dev. Marrakesh, Morroco, May 2006, 44 pp

  • Neuman SP (2005) Longitudinal dispersivity data and implications for scaling behavior. Ground Water 44:139–140. doi:10.1111/j.1745-6584.2006.00166.x

  • Neves MC, Costa L, Monteiro JP (2016) Climatic and geologic controls on the piezometry of the Querença-Silves karst aquifer, Algarve (Portugal). Hydrogeol J 24:1015–1028. doi:10.1007/s10040-015-1359-6

    Article  Google Scholar 

  • Nocchi M, Salleolini M (2013) A 3D density-dependent model for assessment and optimization of water management policy in a coastal carbonate aquifer exploited for water supply and fish farming. J Hydrol 492:200–218. doi:10.1016/j.jhydrol.2013.03.048

    Article  Google Scholar 

  • Nunes G, Monteiro JP, Martins J (2006) Quantificação do consumo de água subterrânea na agricultura por métodos indirectos: detecção remota [Indirect methods for quantifying agricultural groundwater use: remote detection]. In: ESIG (ed) Proc. IX Encontro Util. Informação Geográfica. Oeiras, Portugal, November 2006, 15 pp

  • Oliveira MM, Oliveira L, Ferreira JPL (2008) Estimativa da recarga natural no sistema aquífero de Querença-Silves (Algarve) pela aplicação do modelo BALSEQ_MOD [Estimation of natural recharge in the Querença-Silves aquifer system (Algarve)]. Proc. 9th Congr. da Água. Cascais, Portugal, May 2008, 15 pp

  • Oude Essink G (2001) Saltwater intrusion in 3D large scale aquifers: a Dutch case. Phys Chem Earth 26:337–344

  • Oude Essink GHP, van Baaren ES, de Louw PGB (2010) Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour Res 46, W00F04. doi: 10.1029/2009WR008719

  • Papadopoulou MP, Varouchakis EA, Karatzas GP (2010) Terrain discontinuity effects in the regional flow of a complex karstified aquifer. Environ Model Assess 15(5):319–328. doi: 10.1007/s10666-009-9207-5

  • Payne DF (2010) Effects of climate change on saltwater intrusion at Hilton Head Island, SC, U.S.A. 21st Salt Water Intrusion Meet 2010, pp 293–296

  • Rasmussen P, Sonnenborg TO, Goncear G, Hinsby K (2012) Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrol Earth Syst Sci Discuss 9:7969–8026. doi:10.5194/hessd-9-7969-2012

    Article  Google Scholar 

  • Rozell DJ, Wong T (2010) Effects of climate change on groundwater resources at Shelter Island, New York State, USA. Hydrogeol J 18:1657–1665. doi:10.1007/s10040-010-0615-z

    Article  Google Scholar 

  • Salvador N, Monteiro JP, Hugman R et al (2012) Quantifying and modelling the contribution of streams that recharge the Querença-Silves aquifer in the south of Portugal. Nat Hazards Earth Syst Sci 12:3217–3227. doi:10.5194/nhess-12-3217-2012

    Article  Google Scholar 

  • Santos FD, Miranda P (2006) Alterações climáticas em Portugal. Cenários, Impactos e Medidas de Adaptação [Climate change in Portugal: scenarios, impacts and adaptation measures]. Project SIAM II, 1st edn. Gradiva, Lisbon, Portugal

  • Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs, Edwards aquifer, USA. J Hydrol 276:137–158. doi:10.1016/S0022-1694(03)00064-7

    Article  Google Scholar 

  • Silva ACF, Tavares P, Shapouri M et al (2012) Estuarine biodiversity as an indicator of groundwater discharge. Estuar Coast Shelf Sci 97:38–43. doi:10.1016/j.ecss.2011.11.006

    Article  Google Scholar 

  • Smith AJ, Turner JV (2001) Density-dependent surface water–groundwater interaction and nutrient discharge in the Swan–Canning estuary. Hydrol Process 15:2595–2616. doi:10.1002/hyp.303

    Article  Google Scholar 

  • Souza WR, Voss CI (1987) Analysis of an anisotropic coastal aquifer system using variable-density flow and solute transport simulation. J Hydrol 92:17–41. doi:10.1016/0022-1694(87)90087-4

    Article  Google Scholar 

  • Stigter T, Bento S, Varanda MP et al (2013) Combined assessment of climate change and socio-economic development as drivers of freshwater availability in the south of Portugal. TWAM2013 Int. Conf. Work, Aveiro, Portugal, March 2013

  • Stigter TY, Monteiro JP, Nunes LM et al (2009) Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system. Hydrol Earth Syst Sci Discuss 6:85–120. doi:10.5194/hessd-6-85-2009

    Article  Google Scholar 

  • Stigter TY, Nunes JP, Pisani B et al (2014) Comparative assessment of climate change and its impacts on three coastal aquifers in the Mediterranean. Reg Environ Chang 14:41–56. doi:10.1007/s10113-012-0377-3

    Article  Google Scholar 

  • Sulzbacher H, Wiederhold H, Siemon B et al (2012) Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods. Hydrol Earth Syst Sci 16:3621–3643. doi:10.5194/hess-16-3621-2012

    Article  Google Scholar 

  • Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Process 16:2115–2129. doi:10.1002/hyp.1145

    Article  Google Scholar 

  • Taylor RG, Scanlon B, Döll P et al (2012) Ground water and climate change. Nat Clim Chang 3:322–329. doi:10.1038/nclimate1744

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, UK

  • Watson TA, Werner AD, Simmons CT (2010) Transience of seawater intrusion in response to sea level rise. Water Resour Res 46:W12533. doi:10.1029/2010WR009564

    Article  Google Scholar 

  • Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47:197–204. doi:10.1111/j.1745-6584.2008.00535.x

    Article  Google Scholar 

  • Zheng C, Bennett GD (1995) Applied contaminant transport modeling: theory and practice. Wiley,

Download references

Acknowledgements

The first author wishes to acknowledge the Fundação para a Ciência e Tecnologia (FCT) for the PhD grant SFRH/BD/80149/2011, as well as DHI for supplying a student licence of the FEFLOW software. The research leading to these results has also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 619120 (Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought – MARSOL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Hugman.

Appendix: abbreviations

Appendix: abbreviations

AdA:

Águas do Algarve [regional water utility]

BC:

Boundary condition

EPM:

Equivalent porous medium

FAO:

Food and Agriculture Organization

GCM:

Global circulation model

GDE:

Groundwater dependent ecosystem

ICTP-lin.reg:

ICTP-REGCM3 climate scenario, bias corrected with monthly linear regression

MAR:

Managed aquifer recharge

PG:

Penman-Grindley

QS:

Querença-Silves

RCM:

Regional climate model

SGD:

Submarine groundwater discharge

SWI:

Seawater intrusion

TM:

Thornthwaite-Mather

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hugman, R., Stigter, T., Costa, L. et al. Numerical modelling assessment of climate-change impacts and mitigation measures on the Querença-Silves coastal aquifer (Algarve, Portugal). Hydrogeol J 25, 2105–2121 (2017). https://doi.org/10.1007/s10040-017-1594-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1594-0

Keywords

Navigation