Skip to main content

Advertisement

Log in

Climatic and geologic controls on the piezometry of the Querença-Silves karst aquifer, Algarve (Portugal)

Contrôles climatiques et géologiques sur la piézométrie de l’aquifère karstique de Querença-Silves, Algarve (Portugal)

Controles climáticos y geológicos sobre la piezometría del acuífero kárstico de Querença-Silves, Algarve (Portugal)

气候和地质因素对(葡萄牙)阿尔加维地区Querença-Silves岩溶含水层压力测定的控制

Controles climáticos e geológicos da piezometria do aquífero cárstico Querença-Silves, Algarve (Portugal)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Karst aquifers in semi-arid regions, like Querença-Silves (Portugal), are particularly vulnerable to climate variability. For the first time in this region, the temporal structure of a groundwater-level time series (1985–2010) was explored using the continuous wavelet transform. The investigation focused on a set of four piezometers, two at each side of the S. Marcos-Quarteira fault, to demonstrate how each of the two sectors of the aquifer respond to climate-induced patterns. Singular spectral analysis applied to an extended set of piezometers enabled identification of several quasi-periodic modes of variability, with periods of 6.5, 4.3, 3.2 and 2.6 years, which can be explained by low-frequency climate patterns. The geologic forcing accounts for ~15 % of the differential variability between the eastern and western sectors of the aquifer. The western sector displays spatially homogenous piezometric variations, large memory effects and low-pass filtering characteristics, which are consistent with relatively large and uniform values of water storage capacity and transmissivity properties. In this sector, the 6.5-year mode of variability accounts for ~70 % of the total variance of the groundwater levels. The eastern sector shows larger spatial and temporal heterogeneity, is more reactive to short-term variations, and is less influenced by the low-frequency components related to climate patterns.

Résumé

Les aquifères karstiques dans les régions semi-arides, comme Querença-Silves (Portugal), sont particulièrement vulnérables à la variabilité climatique. Pour la première fois dans cette région, la structure temporelle d’une série chronologique de niveaux d’eau souterraine (1985–2010) a été explorée en utilisant la transformée en ondelettes continue. L’analyse a porté sur un ensemble de quatre piézomètres, deux de chaque côté de la faille de S. Marcos-Quarteira, pour montrer comment chacun des deux secteurs de l’aquifère répond à des modèles induits par le climat. L’analyse spectrale simple appliquée à un ensemble étendu de piézomètres a permis d’identifier plusieurs modes quasi-périodiques de la variabilité, avec des périodes de 6.5, 4.3, 3.2 et 2.6 ans, ce qui peut être expliqué par les conditions climatiques de basse fréquence. La contrainte géologique compte pour ~15 % de la variabilité différentielle entre les secteurs orientaux et occidentaux de l’aquifère. Le secteur occidental montre des variations piézométriques homogènes du point de vue spatiale, de grands effets mémoire et des caractéristiques de filtrage passe-bas, qui sont conformes aux valeurs relativement grandes et uniformes de la capacité d’emmagasinnement et des propriétés de transmissivité. Dans ce secteur, le mode de variabilité de 6.5 ans représente ~70 % de la variance totale des niveaux des eaux souterraines. Le secteur oriental montre quant à lui, une plus grande hétérogénéité spatiale et temporelle; il est plus réactif aux variations à court terme et est moins influencé par les composantes basse fréquence liées aux conditions climatiques.

Resumen

Los acuíferos kársticos en regiones semiáridas, como Querença-Silves (Portugal), son particularmente vulnerables a la variabilidad climática. Por primera vez en esta región, la estructura temporal de una serie de tiempo de niveles de agua subterránea (1985–2010) fue explorada usando la transformada continua de wavelet. La investigación se enfoca en un conjunto de cuatro piezómetros, dos en cada lado de la falla San Marcos-Quarteira, para demostrar cómo cada uno de estos dos sectores del acuífero responden a patrones inducidos por el clima. Se aplica un análisis espectral singular a un conjunto extendido de piezómetros que permitieron la identificación de varios modos cuasi-periódicas de la variabilidad, con períodos de 6.5, 4.3, 3.2 y 2.6 años, que pueden ser explicados por los esquemas climáticos de baja frecuencia. Las forzantes geológicas dan cuenta de ~15 % de la variabilidad del diferencial entre los sectores este y oeste del acuífero. En el sector oeste aparecen variaciones piezométricas espacialmente homogéneas, grandes efectos de memoria y características de filtrado de pasos bajos, que son consistentes con los valores uniformes relativamente grandes de la capacidad de almacenamiento de agua y de las propiedades de la transmisividad. En este sector, el modelo de variabilidad de 6.5 años da cuenta de ~70 % de la varianza total de los niveles de agua subterránea. El sector este muestra mayor heterogeneidad espacial y temporal, es más reactivo a variaciones a corto plazo, y está menos influenciado por los componentes de baja frecuencia relativos a los esquemas climáticos.

摘要

半干旱地区的岩溶含水层,象(葡萄牙)Querença-Silves岩溶含水层,特别容易受到气候变化的影响。使用连续的微波变形法,在这个地区首次进行了地下水位时间序列(1985–2010年)的时间结构的勘查。调查集中在一套由4个测压计组成的装置上,S. Marcos-Quarteira 断层每边两个,展示含水层两部分每面对气候引起的模式是怎样反应的。扩展的一套测压计应用单光谱分析能够识别变化的几个准周期性模式,周期为6.5,4.3,3.2和2.6年,可通过低频率气候模式得到解释。地质因素占含水层东西两侧之间差别变化的大约15%。西部展示了空间上均质的测压变化、大的储存效应及低通滤波特征,这些与相对大的和相同的储水能力值和传输特性一致。在这部分,6.5年的变化模式占地下水位总变化的大约70%。东部显示,较大的空间和时间非均质性对短期变化反应更大,受到与气候模式相关的低频成分的影响较小。

Resumo

Aquíferos cársticos em regiões semiáridas como Querença-Silves (Portugal) são particularmente vulneráveis às variações climáticas. Pela primeira vez nessa região, a estrutura temporal do nível das águas subterrâneas entre 1985 e 2010 foi explorada utilizando a transformada wavelet contínua. O foco da investigação concentrou-se num conjunto de quatro piezômetros, dois em cada lado da falha de S. Marcos-Quarteira, para demonstrar como cada setor responde aos padrões induzidos pelo clima. A aplicação da análise espectral singular a um conjunto mais amplo de piezômetros possibilitou a identificação de vários modos de variabilidade quase periódicos, com períodos de 6.5, 4.3, 3.2 e 2.6 anos, que podem ser explicados por padrões climáticos de baixa frequência. O controle geológico corresponde à ~15 % da variabilidade diferencial entre os setores leste e oeste do aquífero. O setor oeste mostra variações piezométricas espacialmente homogêneas, grandes efeitos de memória e características de filtro passa-baixa, consistente com valores relativamente altos e uniformes de capacidade de armazenamento e propriedades de transmissividade. Nesse setor, o modo de variabilidade de 6.5 anos corresponde à ~70 % da variância total dos níveis de água subterrânea. O setor leste apresenta maior heterogeneidade espacial e temporal, é mais reativo às variações de curto prazo, e é menos influenciado pelos componentes de baixa-frequência relacionados às variações climáticas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almeida C (1985) Hidrogeologia do Algarve Central [Hydrogeology of the central Algarve]. PhD Thesis, Universidade de Lisboa, Portugal

  • Almeida C, Mendonça JL, Jesus MR, Gomes AJ (2000) Sistemas Aquíferos de Portugal Continental [Aquifer Systems in Continental Portugal], Relatório INAG, Instituto da Água, Lisbon

    Google Scholar 

  • Andrade G (1989) Contribuição para o Estudo da Unidade Hidrogeológica Tôr-Silves [Contribution to the study of Tôr-Silves Hidrogeologic unit]. PhD Thesis, Universidade de Lisboa, Portugal

  • Andreo B, Jiménez P, Durán JJ et al (2006) Climatic and hydrological variations during the last 117–166 years in the south of the Iberian Peninsula, from spectral and correlation analyses and continuous wavelet analyses. J Hydrol 324:24–39. doi:10.1016/j.jhydrol.2005.09.010

    Article  Google Scholar 

  • Daubechies I (1990) The wavelet transform time-frequency localization and signal analysis. IEEE Trans Inf Theory 36:961–1004

    Article  Google Scholar 

  • De Lima MIP, Santo FE, Ramos AM, Trigo RM (2014) Trends and correlations in annual extreme precipitation indices for mainland Portugal, 1941–2007. Theor Appl Climatol 119:55–75. doi:10.1007/s00704-013-1079-6

    Article  Google Scholar 

  • Dettinger M, Earman S (2007) Western ground water and climate change: pivotal to supply sustainability or vulnerable in its own right? Ground Water 4(1):4–5

  • Dettinger MD, Ghil M, Strong CM et al (1995) Software expedites singular-spectrum analysis of noisy time series. Eos Trans Am Geophys Union 76(12):14–21

    Google Scholar 

  • Dettinger MD, Cayan DR, Diaz HF, Meko DM (1998) North–south precipitation patterns in western North America on interannual-to-decadal timescales. J Climate 11:3095–3111

    Article  Google Scholar 

  • Dias RP (2001) Neotectónica da Região do Algarve [Neotectonics of the Algarve Region]. PhD Thesis, Universidade de Lisboa, Portugal

  • Dickinson JE, Hanson RT, Ferré TPA, Leake SA (2004) Inferring time-varying recharge from inverse analysis of long-term water levels. Water Resour Res 40:W07403. doi:10.1029/2003WR002650

    Article  Google Scholar 

  • El Janyani S, Massei N, Dupont J-P et al (2012) Hydrological responses of the chalk aquifer to the regional climatic signal. J Hydrol 464–465:485–493. doi:10.1016/j.jhydrol.2012.07.040

    Article  Google Scholar 

  • Espírito Santo F, Ramos AM, de Lima MIP, Trigo RM (2013) Seasonal changes in daily precipitation extremes in mainland Portugal from 1941 to 2007. Reg Environ Chang 14:1765–1788. doi:10.1007/s10113-013-0515-6

    Article  Google Scholar 

  • Gámiz-Fortis SR (2002) Spectral characteristics and predictability of the NAO assessed through Singular Spectral Analysis. J Geophys Res 107:4685. doi:10.1029/2001JD001436

    Article  Google Scholar 

  • Gámiz-Fortis S, Pozo-Vázquez D, Trigo RM, Castro-Díez Y (2008) Quantifying the predictability of winter river flow in Iberia, part I: interannual predictability. J Climate 21:2484–2502. doi:10.1175/2007JCLI1774.1

    Article  Google Scholar 

  • García-Herrera R, Hernández E, Barriopedro D et al (2007) The outstanding 2004/05 drought in the Iberian Peninsula: associated atmospheric circulation. J Hydrometeorol 8:483–498

    Article  Google Scholar 

  • Ghil M, Allen MR, Dettinger MD et al (2002) Advanced spectral methods for climatic time series. Rev Geophys 40:1–41. doi:10.1029/2001RG000092

    Article  Google Scholar 

  • Goodess CM, Jones PD (2002) Links between circulation and changes in the characteristics of Iberian rainfall. Int J Climatol 22:1593–1615. doi:10.1002/joc.810

    Article  Google Scholar 

  • Gurdak JJ, Hanson RT, McMahon PB et al (2007) Climate variability controls on unsaturated water and chemical movement, High Plains Aquifer, USA. Vadose Zone J 6:533

    Article  Google Scholar 

  • Gurdak JJ, Hanson RT, Green TT (2009) Effects of climate variability and change on groundwater resources. US Geol Surv Fact Sheet, FS09-3074

  • Hanson RT, Newhouse MW, Dettinger MD (2004) A methodology to assess relations between climatic variability and variations in hydrologic time series in the southwestern United States. J Hydrol 287:252–269. doi:10.1016/j.jhydrol.2003.10.006

    Article  Google Scholar 

  • Holman IP, Rivas-Casado M, Bloomfield JP, Gurdak JJ (2011) Identifying non-stationary groundwater level response to North Atlantic ocean–atmosphere teleconnection patterns using wavelet coherence. Hydrogeol J 19:1269–1278

    Article  Google Scholar 

  • Hugman R, Stigter TY, Monteiro JP, Nunes L (2012) Influence of aquifer properties and the spatial and temporal distribution of recharge and abstraction on sustainable yields in semi-arid regions. Hydrol Process 26:2791–2801. doi:10.1002/hyp.8353

    Article  Google Scholar 

  • Hugman R, Stigter TY, Monteiro JP (2013) The importance of temporal scale when optimising abstraction volumes for sustainable aquifer exploitation: a case study in semi-arid South Portugal. J Hydrol 490:1–10. doi:10.1016/j.jhydrol.2013.02.053

    Article  Google Scholar 

  • Hurrell JW, Van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Chang 36:301–326

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: The North Atlantic Oscillation: climatic significance and environmental impact AGU Monograph 134, AGU, Washington, DC, pp 1–35. doi:10.1029/134GM01

  • Jerez S, Trigo RM, Vicente-Serrano SM et al (2013) The impact of the North Atlantic Oscillation on renewable energy resources in southwestern Europe. J Appl Meteorol Climatol 52:2204–2225. doi:10.1175/JAMC-D-12-0257.1

    Article  Google Scholar 

  • Kuss AJM, Gurdak JJ (2014) Groundwater level response in U.S. principal aquifers to ENSO, NAO, PDO, and AMO. J Hydrol 519:1939–1952. doi:10.1016/j.jhydrol.2014.09.069

    Article  Google Scholar 

  • Liang X, Zhang Y-K (2013) Temporal and spatial variation and scaling of groundwater levels in a bounded unconfined aquifer. J Hydrol 479:139–145. doi:10.1016/j.jhydrol.2012.11.044

    Article  Google Scholar 

  • Little MA, Bloomfield JP (2010) Robust evidence for random fractal scaling of groundwater levels in unconfined aquifers. J Hydrol 393:362–369. doi:10.1016/j.jhydrol.2010.08.031

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Lorenzo-Lacruz J, Vicente-Serrano SM, López-Moreno JI, González-Hidalgo JC, Mora’n-Tejeda E (2011) The response of Iberian rivers to the North Atlantic Oscillation. Hydrol Earth Syst Sci 15:2581–2597. doi:10.5194/hess-15-2581-2011

    Article  Google Scholar 

  • Lovejoy, S. (2013) What is Climate? EOS 94 (1):1–2

  • Luque-Espinar JA, Chica-Olmo M, Pardo-Igúzquiza E, García-Soldado MJ (2008) Influence of climatological cycles on hydraulic heads across a Spanish aquifer. J Hydrol 354:33–52. doi:10.1016/j.jhydrol.2008.02.014

    Article  Google Scholar 

  • Mandelbrot B (1982) The fractal geometry of nature. Freeman, San Francisco, CA

    Google Scholar 

  • Mangin A (1984) Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale [For a better knowledge of the hydrological systems starting from the cross-correlation and spectral analysis]. J Hydrol 67:25–43

    Article  Google Scholar 

  • Manuppella G, Ramalho M, Rocha R, Marques B, Antunes MT, Pais J, Gonçalves F, Carvalhosa A (1993) Carta geológica da região do Algarve, folha Ocidental, na escala 1:100 000 [Geologic map of the Algarve region, Western sector on a scale of 1:100 000]. Serviços Geológicos de Portugal, Lisbon

  • Massei N, Dupont JP, Mahler BJ et al (2006) Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses. J Hydrol 329:244–257. doi:10.1016/j.jhydrol.2006.02.021

    Article  Google Scholar 

  • Massei N, Durand A, Deloffre J, Dupont J-P, Valdes D, Laignel B (2007) Investigating possible links between the North Atlantic Oscillation and rainfall variability in northwestern France over the past 35 years. J Geophys Res 112:D09121. doi:10.1029/2005JD007000

    Article  Google Scholar 

  • Miranda PMA, Coelho F, Tome’ AR, Valente MA, Carvalho A, Pires C, Pires HO, Cabrinha VP, Ramalho C (2002) 20th Century Portuguese climate and climate scenarios. In: Santos FD, Forbes K, Moita R (eds) Climate change in Portugal: scenarios, impacts and adaptation measures. Gradiva, Lisbon, pp 27–83

  • Monteiro JP, Nunes L, Vieira J et al (2003) Síntese Bidimensional dos Modelos Conceptuais de Funcionamento Hidráulico de Seis Sistemas Aquíferos do Algarve, Baseada em Modelos Numéricos de Escoamento Regional [Bidimensional synthesis of conceptual models of hydraulic behaviour of six aquifer systems in the Agrave region, based on numerical models of regional flow]. In: Ribeiro L, Peixinho de Cristo F (eds) As Águas Subterrâneas no Sul da Península Ibérica [Underground water in the south Iberian Peninsula]. International Association of Hydrologists, Lisbon, pp 159–169

  • Monteiro JP, Vieira J, Nunes L, Younes F (2006) Inverse calibration of a regional flow model for the Querença-Silves Aquifer System (Algarve- Portugal). In: Proceedings of the International Congress on Integrated Water Resources Management and Challenges of the Sustainable Development. Marakesh, Morocco, May 2006, 44 pp

  • Monteiro JP, Ribeiro L, Reis E, Martins J, Matos Silva J (2007) Modelling stream-groundwater interactions in the Querença-Silves Aquifer System. XXXV AIH Congress, Groundwater and Ecosystems, Lisbon, IAH, Goring, UK, pp 41–42

  • Oliveira MM, Oliveira L, Lobo-Ferreira JP (2008) Estimativa da recarga natural no sistema aquífero de Querença-Silves (Algarve) pela aplicação do modelo BALSEQ_MOD [Natural recharge estimate of the Querença-Silves aquifer based on the BALSEQ_MOD model]. In: IX Congresso da Água - Água: desafios de hoje, exigências de amanhã. Cascais,Portugal, 2–4 April 2008

  • Oliveira L, Leitao T, Lobo-Ferreira JP et al (2011) Água, Ecossistemas Aquáticos e Actividade Humana [Water, aquatic ecosystems and human activity]. Projecto PROWATERMAN, Third thematic report: quantitative and qualitative results of the 2011 campaigns and water balances. Referência do Projecto no. PTDC/AACAMB/105061/2008, Laboratório Nacional de Engenharia Civil, Lisbon

  • Salvador N, Monteiro JP, Hugman R et al (2012) Quantifying and modelling the contribution of streams that recharge the Querença-Silves aquifer in the south of Portugal. Nat Hazards Earth Syst Sci 12:3217–3227. doi:10.5194/nhess-12-3217-2012

    Article  Google Scholar 

  • Sang Y-F (2013) A review on the applications of wavelet transform in hydrology time series analysis. Atmos Res 122:8–15. doi:10.1016/j.atmosres.2012.11.003

    Article  Google Scholar 

  • Santos D, Miranda P (2006) Alterações climáticas Portugal. Cenários, impactos e medidas de adaptação [Climatic change in Portugal: scenarios, impacts and adaptation measures]. SIAM II project, 1st edn. Gradiva, Lisbon

  • Slimani S, Massei N, Mesquita J et al (2009) Combined climatic and geological forcings on the spatio-temporal variability of piezometric levels in the chalk aquifer of Upper Normandy (France) at pluridecennal scale. Hydrogeol J 17:1823–1832. doi:10.1007/s10040-009-0488-1

    Article  Google Scholar 

  • SNIRH (2015) National Information System of Water Resources. http://snirh.pt. Accessed 1 May 2015

  • Stigter TY, Monteiro JP, Nunes LM et al (2009) Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system. Hydrol Earth Syst Sci Discuss 6:85–120. doi:10.5194/hessd-6-85-2009

    Article  Google Scholar 

  • Stigter T, Monteiro JP, Nunes L, Ribeiro L, Hugman R (2010) Regional spatial-temporal assessment of groundwater exploitation sustainability in the south of Portugal. Groundwater Quality Sustainability. IAH Book Series (IAH Selected Papers), IAH, Goring, UK, 10 pp

  • Stigter T, Ribeiro L, Samper J et al (2011) Assessing and managing the impact of climate change on coastal groundwater resources and dependent ecosystems. Final report, CIRCLE-Med project. Instituto Superior Técnico, Lisbon

    Google Scholar 

  • Stigter TY, Nunes JP, Pisani B et al (2014) Comparative assessment of climate change and its impacts on three coastal aquifers in the Mediterranean. Reg Environ Chang 14:41–56. doi:10.1007/s10113-012-0377-3

    Article  Google Scholar 

  • Terrinha P (1998) Structural geology and tectonic evolution of the Algarve Basin, South Portugal. PhD Thesis, University of London, London, 430 pp

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Tremblay L, Larocque M, Anctil F, Rivard C (2011) Teleconnections and interannual variability in Canadian groundwater levels. J Hydrol 410:178–188. doi:10.1016/j.jhydrol.2011.09.013

    Article  Google Scholar 

  • Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Climate Res 20:9–17

    Article  Google Scholar 

  • Trigo RM, Pozo-Vázquez D, Osborn TJ et al (2004) North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int J Climatol 24:925–944. doi:10.1002/joc.1048

    Article  Google Scholar 

  • Trigo RM, Valente MA, Trigo IF et al (2008) The impact of North Atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic. Ann NY Acad Sci 1146:212–34. doi:10.1196/annals.1446.014

    Article  Google Scholar 

  • Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaotic signal. Phys D 58:95–126

    Article  Google Scholar 

  • Vicente-Serrano SM, López-Moreno JI (2008) Nonstationary influence of the North Atlantic Oscillation on European precipitation. J Geophys Res 113:20120. doi:10.1029/2008JD010382

    Article  Google Scholar 

  • Vieira J, Monteiro JP (2003) Atribuição de Propriedades a Redes Não Estruturadas de Elementos Finitos Triangulares (Aplicação ao Cálculo da Recarga de Sistemas Aquíferos do Algarve) [Properties assignment to unstructured networks of triangular finite elements, (applications to the recharge of the Algarve’s aquifer systems)]. In: Ribeiro L, Peixinho de Cristo F (eds) As Águas Subterrâneas no Sul da Península Ibérica [Underground water in the south Iberian Peninsula]. International Association of Hydrologists, Lisbon

  • Zhang YK, Schilling K (2004) Temporal scaling of hydraulic head and river base flow and its implication for groundwater recharge. Water Resour Res 40:W03504. doi:10.1029/2003WR002094

    Google Scholar 

Download references

Acknowledgements

This research contribution is supported by the FCT project IDL-FCT-UID/GEO/50019/2013. The research leading to these results has also received funding from the European Union Seventh Framework Programme (FP7/2007‐2013) under grant agreement No. 619120 (Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought – MARSOL). We thank the constructive comments of two anonymous reviewers that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. Neves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, M.C., Costa, L. & Monteiro, J.P. Climatic and geologic controls on the piezometry of the Querença-Silves karst aquifer, Algarve (Portugal). Hydrogeol J 24, 1015–1028 (2016). https://doi.org/10.1007/s10040-015-1359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1359-6

Keywords

Navigation