Skip to main content

Advertisement

Log in

Arsenic distribution along different hydrogeomorphic zones in parts of the Brahmaputra River Valley, Assam (India)

Distribution de l’arsenic le long de différentes zones hydromorphologiques de la vallée de la rivière Brahmapoutre, Assam (Inde)

Distribución de arsénico a lo largo de diferentes zonas hidrogeomórficas en partes del valle del río Brahmaputra, Assam (India)

(印度) 阿萨姆邦Brahmaputra河谷部分地区沿不同水文地貌带的砷分布

Distribuição de arsênico ao longo de diferentes zonas hidrogeomórficas em partes do Vale do Rio Brahmaputra, Assam (Índia)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The spatial distribution of arsenic (As) concentrations along three classified hydrogeomorphological zones in the Brahmaputra River Valley in Assam (India) have been investigated: zone I, comprising the piedmont and alluvial fans; zone II, comprising the runoff areas; and zone III, comprising the discharge zones. Groundwater (150 samples) from shallow hand-pumped and public water supply wells (2–60 m in depth) was analysed for chemical composition to examine the geochemical processes controlling As mobilization. As concentrations up to 0.134 mg/L were recorded, with concentrations below the World Health Organization and the Bureau of Indian Standards drinking-water limits of 0.01 mg/L being found mainly in the proximal recharge areas. Eh and other redox indicators (i.e., dissolved oxygen, Fe, Mn and As) indicate that, except for samples taken in the recharge zone, groundwater is reducing and exhibits a systematic decrease in redox conditions along the runoff and discharge zones. Hydrogeochemical evaluation indicated that zone I, located along the proximal recharge areas, is characterized by low As concentration, while zones II and III are areas with high and moderate concentrations, respectively. Systematic changes in As concentrations along the three zones support the view that areas of active recharge with high hydraulic gradient are potential areas hosting low-As aquifers.

Résumé

La distribution spatiale des concentrations en arsenic (As) le long de trois zones hydromorphologiques classées dans la vallée de la rivière Brahmapoutre (Inde) a été étudiée: zone I, comprenant le piedmont et les cônes alluviaux; zone II, comprenant les aires de ruissellement et zone III, comprenant les zones de décharges. Les eaux souterraines (150 échantillons) de puits peu profonds et utilisés pour l’alimentation en eau potable (2–60 m de profondeur) ont été analysées du point de vue de leur composition chimique afin d’étudier les processus géochimiques contrôlant la mobilization de l’As. Des concentrations en As jusqu’à 0.134 mg/L ont été enregistrées, avec des concentrations en dessous des standards de l’organization mondiale de la santé (OMS) et du bureau Indien des standards pour les eaux destinées à la consommation humaine de 0.01 mg/L ont été trouvées principalement dans les zones proximales de recharge. L’Eh et autres indicateurs de conditions réductrices (comme l’oxygène dissous, Fe, Mn et As) montrent que, à l’exception des échantillons de la zone de recharge, les eaux souterraines sont réductrices et présentent une diminution systématique des conditions rédox le long des zones de ruissellement et de décharge. L’évaluation hydrogéochimique indique que la zone I, localisée le long des aires de recharge, est. caractérisée par de faibles concentrations en As, alors que les zones II et III sont des secteurs respectivement de fortes et moyennes concentrations. Les changements systématiques de concentrations en As le long des trois zones confirment l’idée que les aires de recharge active avec de forts gradients hydrauliques sont des secteurs potentiellement aquifères avec de faibles concentrations en As.

Resumen

Se investigó la distribución espacial de las concentraciones de arsénico (As) a lo largo de tres zonas hidrogeomorfológicas clasificadas en el valle del río Brahmaputra en Assam (India): la zona I, que comprende el piemonte y los abanicos aluviales; la zona II, que comprende las áreas de escorrentía; y la zona III, que comprende las zonas de descarga. Se analizó la composición química del agua subterránea (150 muestras) procedentes de pozos poco profundos de bombeo manual y de agua pública (2–60 m de profundidad) para examinar los procesos geoquímicos que controlan la movilización del As. Se registraron concentraciones de As de hasta 0.134 mg/L, encontrándose concentraciones por debajo de los límites de 0.01 mg/L para agua potable de la Organización Mundial de la Salud y la Oficina de Normas de la India, principalmente en las áreas de recarga proximal. Eh y otros indicadores redox (es decir, oxígeno disuelto, Fe, Mn y As) indican que, excepto en las muestras tomadas en la zona de recarga, el agua subterránea se está reduciendo y muestra una disminución sistemática de las condiciones redox a lo largo de las zonas de escorrentía y descarga. La evaluación hidrogeoquímica indicó que la Zona I, localizada a lo largo de las áreas de recarga proximal, se caracteriza por una baja concentración de As, mientras que las Zonas II y III son áreas con concentraciones altas y moderadas, respectivamente. Los cambios sistemáticos en las concentraciones de As a lo largo de las tres zonas apoyan la opinión de que las áreas de recarga activa con alto gradiente hidráulico son áreas potenciales que albergan a acuíferos de bajo contenido de As.

摘要

调查了(印度)阿萨姆邦Brahmaputra河谷沿三个类别的水文地貌带砷含量的空间分布:I带,包含山前地带和冲积扇;II带,包含径流区;III带,包含排泄带。分析了浅层手泵井和公共供水井(深度2–60 米)中的地下水(150个水样)的化学组分,以调查控制砷活动化的地球化学过程。记录到砷含量达到0.134 mg/L,低于世界卫生组织和印度标准饮用水标准0.01 mg/L的含量主要位于临近的补给区。Eh 和其它氧化还原反应指标(也就是溶解氧、Fe、 Mn和 As)表明,除了补给区的所采的水样,地下水减少,显示沿径流区和排泄区氧化还原反应条件系统性减少。水文化学评估结果表明,位于沿临近补给区的I带的特征是砷含量低,而II带和III带所处的地区砷含量分别为高和中等。沿三个带的砷含量系统变化支持这种观点,即具有很大水力梯度的活跃补给区是主导低砷含水层的潜力区。.

Resumo

A distribuição espacial das concentrações de arsênico (As) ao longo de três zonas hidrogeomorfológicas no Vale do Rio Brahmaputra, em Assam (Índia) foram investigadas: Zona I, compreendendo o piedmont e leques aluviais; Zona II, compreendendo as áreas de escoamento superficial; e Zona III, compreendendo as zonas de descarga. Águas subterrâneas (150 amostras) de poços rasos bombeados manualmente e de abastecimento públicos (2–60 m de profundidade) foram coletadas e suas composições químicas analisadas, a fim de examinar os processos geoquímicos que controlam a mobilidade do As. Concentrações de As de até 0.134 mg/L foram registradas, apresentando concentrações abaixo dos permitido para água potável pela padronização da Organização Mundial da Saúde “Bureau of Indian Standards”, que apresenta limite de 0.01 mg/L, sendo encontrado principalmente próximo as áreas de recarga. Eh e outros indicadores redox (oxigênio dissolvido, Fe, Mn e As) indicam que, exceto as amostras coletadas na zona de recarga, as amostras de água subterrânea apresentam diminuição sistemática das condições redox ao longo do escoamento superficial e das zonas de descarga. A evolução hidrogeoquímica indica que a Zona I, localizada ao longo das áreas de recarga próximas, é caracterizada pelas baixas concentrações de As, enquanto que as Zonas II e III apresentam concentrações altas à moderadas, respectivamente. Mudanças sistemáticas nas concentrações de As ao longo das três zonas indicam que, áreas ativas de recarga com alto gradiente hidráulico são áreas potenciais para hospedar aquíferos com baixas concentrações de As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acharyya SK, Lahiri S, Raymahashay BC, Bhowmik A (2000) Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environ Geol 39:1127–1137

    Article  Google Scholar 

  • Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SMM, Bhuyian MA, Imam MB, Khan AA, Sracek O (2004) Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl Geochem 19:181–200

    Article  Google Scholar 

  • Aziz Z et al (2008) Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh. Water Resour Res 44:W07416. doi:10.1029/2007WR006000

    Article  Google Scholar 

  • Berg M, Luiz S, Trang PTK, Viet PH, Giger W, Stuben D (2006) Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits. Environ Sci Technol 2006(40):5567–5573

    Article  Google Scholar 

  • Berg M, Trang PTK, Stengel C, Buschmann J, Viet PH, Dan N, Giger W, Stüben D (2008) Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: the impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chem Geol 249:91–112

    Article  Google Scholar 

  • Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51(2):359–365

    Google Scholar 

  • BGS and DPHE (2001) Arsenic contamination of groundwater in Bangladesh. In: Kinniburgh DG, Smedley PL (eds) British Geological Survey WC/00/19, Keyworth, UK

  • Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, eastern India: options for safe drinking water supply. J Water Resour Dev 13:79–92

    Article  Google Scholar 

  • Bhattacharya P, Jacks G, Jana J, Sracek A, Gustafsson JP, Chatterjee D (2001) Geochemistry of the Holocene alluvial sediments of Bengal Delta Plain from West Bengal, India: implications on arsenic contamination in groundwater. In: Groundwater arsenic contamination in the Bengal Delta Plain of Bangladesh. Proceedings of the KTH-Dhaka University Seminar, University of Dhaka, KTH Publ. 3084, KTH Royal Institute of Technology, Stockholm, pp 21–40

  • Bora AK (2004) Fluvial geomorphology. In: Singh VP, Sharma N, Ojha CSP (eds) The Brahmaputra Basin Water Resource 47(88). doi:10.1007/978-94-017-0540-0

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in south and south-east Asia. Environ Int 35:647–654

    Article  Google Scholar 

  • Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jean JS, Liu CW, López D, Armienta MA, Guilherme LRG, Gomez Cuevas A, Cornejo L, Cumbal L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35

    Article  Google Scholar 

  • Bureau of Indian Standards (BIS) (2003) Indian standard specifications for drinking water IS 10500. BIS, New Delhi, India, 10 pp

  • Buschmann J, Berg M, Stengel C, Winkel L, Sampson M, Tran PTK, Viet PH (2008) Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population. Environ Int 34:756–764

    Article  Google Scholar 

  • Central Ground Water Board Report (2008) Hydro geological and groundwater resources of Darrang District, Assam. Govt of India, Ministry of Water Resource, New Delhi

  • Chetia M, Chatterjee S, Banerjee S, Nath MJ, Singh L, Srivastava RB, Sarma HP (2011) Groundwater arsenic contamination in the Brahmaputra River basin: a water quality assessment in the Golaghat (Assam), India. Environ Monit Assess 173:371–385

    Article  Google Scholar 

  • Choudhury R, Sharma P, Mahanta C, Sharma HP (2015) Evaluation of the processes controlling arsenic contamination in parts of the Brahmaputra floodplains in Assam, India. Environ Earth Sci 73:4473–4482

  • Das D, Chatterjee A, Mandal BK, Samanta G, Chanda B, Chakraborti D (1995) Arsenic in ground water in six districts of West Bengal, India, the biggest arsenic calamity in the world, part 2: arsenic concentration in drinking water, hair, nail, urine, skin-scale and liver tissue (biopsy) of the affected people. Analyst 120:917–924

    Article  Google Scholar 

  • Das N, Deka JP, Shim J, Patel AK, Kumar A, Sarma KP, Kumar M (2016) Effect of river proximity on the arsenic and fluoride distribution in the aquifers of the Brahmaputra floodplains, Assam, northeast India. Groundwater Sustain Dev 2–3:130–142

    Article  Google Scholar 

  • Dowling CB, Poreda RJ, Basu AR, Peters SL, Aggarwal PK (2002) Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resour Res 38(9):1–18

    Article  Google Scholar 

  • Enmark G, Nordborg D (2007) Arsenic in the groundwater of the Brahmaputra floodplains, Assam, India: source, distribution and release mechanisms. Minor Field Study 131, Uppsala University, Uppsala, Sweden

  • Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in south and Southeast Asia. Science 328(5982):1123–1127

    Article  Google Scholar 

  • Garzanti E, Vezzoli G, Ando S, France–Lanord C, Singh SK, Foster G (2004) Sand petrology and focused erosion in collision orogens: the Brahmaputra case. Earth Planet Sci Lett 220:157–174

    Article  Google Scholar 

  • Goswami R, Rahman MM, Murrill M, Sarma KP, Thakur R, Chakraborti D (2013) Arsenic in the groundwater of Majuli: the largest river island of the Brahmaputra: magnitude of occurrence and human exposure. J Hydrol 518:354–362. doi:10.1016/j.jhydrol.2013.09.022

    Article  Google Scholar 

  • Guo HM, Yang SZ, Tang XH et al (2008) Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Sci Total Environ 393:131–144. doi:10.1016/j.scitotenv.2007.12.025

    Article  Google Scholar 

  • Guo HM, Zhang Y, Jia YF, Zhao K, Li Y (2013) Spatial and temporal evolutions of groundwater arsenic approximately along the flow path in the Hetao Basin, Inner Mongolia. Chin Sci Bull 58(25):3070–3079

    Article  Google Scholar 

  • Halim MA, Majumder RK, Nessa SA, Hiroshiro Y, Uddin MJ, Shimada J, Jinno K (2009) Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. J Hazard Mater 164:1335–1345

  • Guo H, Wen D, Liu Z, Jia Y, Guo Q (2014) A review of high arsenic groundwater in mainland and Taiwan, China: distribution, characteristics and geochemical processes. Appl Geochem 41(2014):196–217

    Article  Google Scholar 

  • Haque S, Johannesson KH (2006) Arsenic concentration and speciation along a groundwater flow path: the Carrizo sand aquifers, taxes, USA. Chem Geol 228:57–71

    Article  Google Scholar 

  • Hasan MA, Ahmed KM, Sracek O, Bhattacharya P, von Bromssen M, Broms S, Fogelstrom J, Mazumder ML, Jacks G (2007) Arsenic in shallow groundwater of Bangladesh: investigations from three different physiographic settings. Hydrogeol J 15:1507–1522

    Article  Google Scholar 

  • Heroy DC, Kuehl SA, Goodbred SL (2003) Mineralogy of the Ganges and Brahmaputra River: implications for river switching and Late Quaternary climate change. Sediment Geol 155:343–359

    Article  Google Scholar 

  • Ho JC (2001) Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. J Hydrol 253:194–210

    Article  Google Scholar 

  • Jia Y, Guo H, Jiang Y, Wua Y, Zhou Y (2014) Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin, Inner Mongolia. J Hydrol doi:10.1016/j.jhydrol.2014.02.004

  • Lahiri S, Sinha R (2012) Tectonic controls on the morphodynamics of the Brahmaputra River system in the upper Assam Valley, India. Geomorphology 169–170(2012):74–85

    Article  Google Scholar 

  • Mahanta C, Enmark G, Nordborg D, Sracek O, Nath B, Nickson RT, Herber R, Jacks G, Mukherjee A, Ramanathai AL, Choudhury R, Bhattacharya P (2015) Hydrogeochemical controls on mobilization of arsenic in groundwater of a part of Brahmaputra River floodplain, India. J Hydrol Reg Stud 4(part A):154–171

    Article  Google Scholar 

  • Mukherjee AB, Bhattacharya P (2001) Arsenic in groundwater in the Bengal Delta Plain: slow poisoning in Bangladesh. Environ Rev 9:189–220

  • McArthur JM, Banerjee DM, Hudson-Edwards KA, Mishra R, Purohit R, Ravenscroft P, Cronin A, Howarth RJ, Chatterjee A, Talukder T, Lowry D, Houghton S, Chadha DK (2004) Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl Geochem 19:1255–1293

  • Mukherjee A, Fryar AE (2008) Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Appl Geochem 23:863–892

    Article  Google Scholar 

  • Mukherjee A, Brömssen von M, Scanlon BR, Bhattacharya P, Fryar AE, Hasan MA, Ahmed KM, Chatterjee D, Jacks G, Sracek O (2008) Hydrogeochemical comparison and effects of overlapping redox zones on groundwater arsenic near the Western (Bhagirathi sub-basin, India) and Eastern (Meghna sub-basin, Bangladesh) margins of the Bengal Basin. J Contam Hydrol 99:31–48

  • Nath B, Berner Z, Basu Mallik S, Chatterjee D, Charlet L, Stueben D (2005) Characterization of aquifers conducting groundwaters with low and high arsenic concentrations: a comparative case study from West Bengal, India. Mineral Mag 69:841–853

    Article  Google Scholar 

  • Neumann RB, Ashfque KN, Badruzzaman ABM, Ali MA, Shoemaker JK, Harvey CF (2010) Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat Geosci 3:46–52

    Article  Google Scholar 

  • Nickson RT, McArthur JM, Burgess W, Ahmed KM, Ravenscroft P, Rahmanñ M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338

    Article  Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  Google Scholar 

  • Nordstrom DK, Archer DG (2003) Arsenic thermodynamic data and environmental geochemistry. In: Welch AH, Stollenwerk KG (eds) Arsenic in ground water: geochemistry and occurrence, chap 1. Kluwer, Dordrecht, pp 1–25

    Chapter  Google Scholar 

  • Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (2007) Arsenic in soil and groundwater: an overview. In trace and other contaminants in the environment. In: Arsenic in Soil and Groundwater Environment. Elsevier, Amsterdam, pp 3–60

  • Polya D, Charlet L (2009) Rising arsenic risk? Nat Geosci 2:383–384

    Article  Google Scholar 

  • Purkait B (2004) Hydrogeology. In: Singh VP, Sharma N, Ojha CSP (eds) The Brahmaputra Basin water resource. Water Science and Technology Library, book 47, Springer, Heidelberg, Germany, 613 pp. doi:10.1007/978-94-017-0540-0

  • Raju NJ, Patel P, Gurung D, Ramb P, Gossel W, Wycisk P (2015) Geochemical assessment of groundwater quality in the Dun Valley of central Nepal using chemometric method and geochemical modelling. Groundwater Sustain Dev 1(2015):135–145

    Article  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. RGS-IBG book series. Wiley-Blackwell, Chichester, UK

    Book  Google Scholar 

  • Reza AS, Jean JS, Yang HJ, Lee MK, Woodall B, Liu CC, Lee JF, Luo SD (2010) Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh. Water Res 44:2021–2037

  • Sailo L, Mahanta C (2014) Arsenic mobilization in the Brahmaputra plains of Assam: groundwater and sedimentary controls. Environ Monit Assess 186:6805–6820. doi:10.1007/s10661-014-3890-7

    Article  Google Scholar 

  • Singh SK, Kumar A, Lanord CF (2006) Sr and 87Sr/86Sr in waters and sediments of the Brahmaputra River system: silicate weathering, CO2 consumption and Sr flux. Chem Geol 234(2006):308–320

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Smedley PL, Nicolli HB, Macdonald DM, Barros AJ, Tullio JO (2002) Hydro-geochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17:259–284

    Article  Google Scholar 

  • Smith A, Lingas E, Rahman M (2000) Contamination of drinking-water by as in Bangladesh. Bull World Health Org 78:1093–1103

    Google Scholar 

  • Sracek O, Bhattacharya P, Jacks G, Gustafsson PJ, Brömssen von M (2004) Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Appl Geochem 19:169–180

  • van Geen A, Zheng Y, Goodbred S Jr, Horneman A, Aziz Z, Cheng Z, Stute M, Mailloux B, Weinmen B, Hoque MA, Seddique AA, Hossain MS, Chowdhury SH, Ahmed KM (2008) Flushing history as a control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin. Environ Sci Technol 42:2283–2288

    Article  Google Scholar 

  • van Geen A, Bostick B, Trang PTK, Lan VM, Mai NN, Manh PD, Viet PH, Radloff K, May JL, Stahl MO, Harvey CF, Oates P, Weinman B, Stengel C, Frei F, Kipfer R, Berg M (2013) Retardation of arsenic transport through a Pleistocene aquifer. Nature 501:204–207. doi:10.1038/nature12444

    Article  Google Scholar 

  • Verma S, Mukherjee A, Choudhury R, Mahanta C (2014) Brahmaputra River basin groundwater: solute distribution, chemical evolution and arsenic occurrences in different geomorphic settings. J Hydrol Reg Stud 4(part A):131–153

  • von Brömssen M, Jakariya M, Bhattacharya P, Ahmed KM, Hasan MA, Sracek O, Jonsson L, Lundell L, Jacks G (2007) Targeting low arsenic aquifers in groundwatres of Matlab Upazila, southeastern Bangladesh. Sci Total Environ 379:121–132

    Article  Google Scholar 

  • World Health Organization (WHO) (2003) Guidelines for drinking water quality, vol 81. Health criteria and other supporting information. World Health Organization, Geneva

    Google Scholar 

  • Xie X, Wang Y, Ellis A, Liu C, Duan M, Li J (2014) Impact of sedimentary provenance and weathering on arsenic distribution in aquifers of the Datong basin, China: constraints from elemental geochemistry. J Hydrol 519:3541–3549

    Article  Google Scholar 

  • Zhang YL, Cao WG, Wang WZ et al (2013) Distribution of groundwater arsenic and hydraulic gradient along the shallow groundwater flow-path in Hetao Plain, northern China. J Geochem Explor 135:31–39. doi:10.1016/j.gexplo.2012.12.004

    Article  Google Scholar 

  • Zheng Y, Stute M, van Geen A, Gavrieli I, Dhar R, Simpson HJ, Schlosser P, Ahmed KM (2004) Redox control of arsenic mobilization in Bangladesh groundwater. Appl Geochem 19:201–214

    Article  Google Scholar 

  • Zhu YC, Zhao XY, Chen M et al (2015) Characteristics of high arsenic groundwater in Hetao Basin, Inner Mongolia, northern China. Sci Cold Arid Regions 7(1):0104–0110. doi:10.3724/SP.J.1226.2015.00104

    Google Scholar 

Download references

Acknowledgements

RC acknowledges the institute research fellowship from Indian Institute of Technology (IIT) Guwahati for conducting research. The author acknowledges support of IIT Kharagpur for analyses of groundwater samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runti Choudhury.

Additional information

Published in the special issue “Hydrogeology and Human Health”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, R., Mahanta, C., Verma, S. et al. Arsenic distribution along different hydrogeomorphic zones in parts of the Brahmaputra River Valley, Assam (India). Hydrogeol J 25, 1153–1163 (2017). https://doi.org/10.1007/s10040-017-1584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1584-2

Keywords

Navigation