Skip to main content
Log in

Arsenic mobilization in the Brahmaputra plains of Assam: groundwater and sedimentary controls

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Arsenic (As) mobilization to the groundwater of Brahmaputra floodplains was investigated in Titabor, Jorhat District, located in the North Eastern part of India. The groundwater and the aquifer geochemistry were characterized in the study area. The range of As concentration in the groundwater varies from 10 to 440 μg/l with mean concentration 210 μg/l. The groundwaters are characterized by high dissolved Fe, Mn, and HCO3 and low concentrations of NO3 and SO4 2− indicating the reduced conditions prevailing in the groundwater. In order to understand the actual mobilization processes in the area, six core drilling surrounding the two target tube wells (T1 and T2) with high As concentration (three drill-cores surrounds each tube well closely) was done. The sediment was analyzed its chemical, mineralogical, and elemental compositions. A selective sequential extraction suggested that most of the As in the sediment is bound to Fe oxides fractions (32 to 50 %) and the competition for adsorption site by anions (PO4 3−) also accounts to significant fractions of the total arsenic extracted. High variability in the extraction as well as properties of the sediment was observed due to the heterogeneity of the sediment samples with different chemical properties. The SEM and EDX results indicate the presence of Fe, Mn coating along with As for most of the sample, and the presence of As associated minerals were calculated using PHREEQC. The mobilization of As into the groundwater was anticipated to be largely controlled by the reductive dissolution of Fe oxides and partly by the competitive anions viz. PO4 3−.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., & Ishizuka, T. (2003). Geochemical occurrences of arsenic in groundwater of Bangladesh: sources and mobilization processes. Journal of Geochemical Exploration, 77, 109–131.

    Article  CAS  Google Scholar 

  • Anschutz, P., Dedieu, K., Desmazes, F., & Chaillou, G. (2005). Speciation, oxidation state, and reactivity of particulate manganese in marine sediments. Chemical Geology, 218, 265–279.

    Article  CAS  Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater. Washington, D.C.: American Public Health Association.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution. Rotterdam: Balkema.

    Book  Google Scholar 

  • Appelo, C. A. J., Van-Der-Weiden, M. J. J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science and Technology, 36, 3096–3103.

    Article  CAS  Google Scholar 

  • Baig, J. A., Kazi, T. G., Arain, M. B., Shah, A. Q., Sarfraz, R. A., Afridi, H. I., et al. (2009). Arsenic fractionation in sediments of different origins using BCR sequential and single extraction methods. Journal of Hazardous Materials, 167, 745–751.

    Article  CAS  Google Scholar 

  • Berg, M., Stengel, C., Trang, P. T. K., Viet, P. H., Sampson, M. L., & Leng, M. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Science of the Total Environment, 372, 413–425.

    Article  CAS  Google Scholar 

  • Berg, M., Trang, P. T. K., Stengel, C., Buschmann, J., Viet, P. H., Dan, N. V., et al. (2008). Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: the impact of iron–arsenic ratios, peat, river bank deposits and excessive groundwater abstraction. Chemical Geology, 249, 91–112.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic contaminated groundwater in alluvial aquifers from Delta plains, Eastern India: options for safe drinking water supply. Water Resources Development, 13, 79–92.

    Article  Google Scholar 

  • Bhattacharya, P., Jacks, G., Ahmed, K. M., Routh, J., & Khan, A. A. (2002). Arsenic in groundwater of the Bengal delta plain aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69, 538–545.

    Article  CAS  Google Scholar 

  • CGWB-Central Ground Water Board. (2004). Groundwater resources of Assam. Guwahati: CGWB, North East Region, Ministry of Water Resource.

    Google Scholar 

  • Chakraborti, D., Sengupta, M. K., Rahaman, M. M., Ahamed, S., Chowdhury, U. K., & Hossain, M. A. (2004). Groundwater arsenic contamination and its health effects in the Ganga–Megna–Brahmaputra Plain. Journal of Environmental Monitoring, 6, 74–83.

    Article  Google Scholar 

  • Chakraborti, D., Das, B., & Murrill, M. (2011). Examining India’s groundwater quality management. Environmental Science and Technology, 45, 27–33.

    Article  CAS  Google Scholar 

  • Charlet, L., Chakraborty, S., Appelo, C. A. J., Roman-Ross, G., Nath, B., Ansari, A. A., et al. (2007). Chemodynamics of an As “hotspot” in a West Bengal aquifer: a field and reactive transport modeling study. Applied Geochemistry, 22, 1273–1292.

    Article  CAS  Google Scholar 

  • Dean, W. E., Jr. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology, 44, 242–248.

    CAS  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science and Technology, 37, 4182–4189.

    Article  CAS  Google Scholar 

  • Eiche, E., Neumann, T., Berg, M., Weinman, B., van Geen, A., Norra, S., et al. (2008). Geochemical processes underlying a sharp contrast in groundwater arsenic concentrations in a village on the Red River delta, Vietnam. Applied Geochemistry, 23, 3143–3154.

    Article  CAS  Google Scholar 

  • Favas, P. J. C., Pratas, J., Gomes, M. E. P., & Cala, V. (2011). Selective chemical extraction of heavy metals in tailings and soils contaminated by mining activity: environmental implications. Journal of Geochemical Exploration, 111, 160–171.

    Article  CAS  Google Scholar 

  • Goh, K. H., & Lim, T. T. (2004). Geochemistry of inorganic arsenic and selenium in a tropical soil: effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption. Chemosphere, 55, 849–859.

    Article  CAS  Google Scholar 

  • Guo, H. M., Zhang, B., Li, Y., Berner, Z., Tang, X., Norra, S., et al. (2011). Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environmental Pollution, 159, 876–883.

    Article  CAS  Google Scholar 

  • Halim, M. A., Majumder, R. K., Nessa, S. A., Hiroshiro, Y., Uddin, M. J., Rahman, S. H., et al. (2009). Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. Journal of Hazardous Materials, 164, 1335–1345.

    Article  CAS  Google Scholar 

  • Halim, M. A., Majumder, R. K., Nessa, S. A., Oda, K., Hiroshiro, Y., & Jinno, K. (2010). Arsenic in shallow aquifer in the eastern region of Bangladesh: insights from principal component analysis of groundwater compositions. Environmental Monitoring and Assessment, 161, 453–472.

    Article  Google Scholar 

  • Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon, B. N., Yu, W., Ashraf, A. M., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, 1602–1606.

    Article  CAS  Google Scholar 

  • Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon, B. N., Yu, W., & Ali, M. A. (2005). Groundwater arsenic contamination on the Ganges delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale. Comptes Rendus Geoscience, 337, 285–296.

    Article  CAS  Google Scholar 

  • Hendershot, W. H., Lalande, H., & Duquette, M. (2008). Soil reaction and exchangeable acidity. In M. R. Carter, & E. G. Gregorich (Eds.), Soil sampling and method of analysis. 2nd Edition. Canadian Society of Soil Science. Boca Raton, CRC Press, Taylor and Francis Group.

  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., et al. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, 72, 301–309.

    Article  CAS  Google Scholar 

  • Kirk, M. F., Roden, E. E., Crossey, L. J., Brealey, A. J., & Spilde, M. N. (2010). Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors. Geochimica et Cosmochimica Acta, 74, 2538–2555.

    Article  CAS  Google Scholar 

  • Lopez, R., Álvarez-Valero, M., Nieto, J., Sáez, R., & Matos, X. (2008). Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt). Applied Geochemistry, 23, 3452–3463.

    Article  Google Scholar 

  • Mahanta, C., Dutta, A., Basu, S., Borah, P., Choudhury, R., Saikia, L., et al. (2010). Groundwater arsenic contamination in the Brahmaputra floodplains: outcome of a comprehensive field investigation in Assam, India. Proc. Of the ASCE - EWRI 3rd International Perspective on Current and Future State of Water Resource & the Environment at IIT Chennai from 5th January–7th January 2010.

  • Manning, B. A., & Goldberg, S. (1996). Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of American Journal, 60, 121–131.

    Article  CAS  Google Scholar 

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: the example of West Bengal and its worldwide implications. Applied Geochemistry, 19, 1255–1293.

    Article  CAS  Google Scholar 

  • McArthur, J. M., Nath, B., Banerjee, D. M., Purohit, R., & Grassineau, N. (2011). Palaeosol control on groundwater flow and pollutant distribution: the example of arsenic. Environmental Science and Technology, 45, 1376–1383.

    Article  CAS  Google Scholar 

  • Mulligan, C., Fukue, M., & Sato, Y. (2010). Sediments contamination and sustainable remediation. New York: CRC Press, Taylor and Francis Group.

    Google Scholar 

  • Nath, B., Berner, Z., Chatterjee, D., Basu Mallik, S., & Stueben, D. (2008). Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic Part II: comparative geochemical profile and leaching study. Applied Geochemistry, 23, 996–1011.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Burgess, W. G., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395, 338.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.

    Article  CAS  Google Scholar 

  • Pal, T., Mukherjee, P. K., & Sengupte, S. (2002). Nature of arsenic pollutants in groundwater of Bengal Delta—a case study from Baruipur area, West Bengal, India. Current Science, 82, 554–561.

    CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 994259.

  • Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M., & Fendorf, S. (2008). Near surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 454, 505–508.

    Article  CAS  Google Scholar 

  • Postma, D., Larsen, F., Minh Hue, N. T., Thanh Duc, M., Viet, P. H., Nhan, P. Q., et al. (2007). Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochimica et Cosmochimica Acta, 71, 5054–5071.

    Article  CAS  Google Scholar 

  • Postma, D., Jessen, S., Minh Hue, N. T., Duc, M. T., Koch, C. B., Viet, P. H., et al. (2010). Mobilization of arsenic and iron from Red River floodplains sediments, Vietnam. Geochimica et Cosmochimica Acta, 74, 3367–3381.

    Article  CAS  Google Scholar 

  • Sailo, L., & Mahanta, C. (2013). Hydrogeochemical factors affecting the mobilization of As into the groundwater of Brahmaputra alluvial plains of Assam, Northeast India. Environmental Science: Processes and Impacts, 15, 1775.

    CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Stollenwerk, K. G., Breit, G. N., Welch, A. H., Yount, J. C., Whitney, J. W., Foster, A. L., et al. (2007). Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Science of the Total Environment, 379, 133–150.

    Article  CAS  Google Scholar 

  • Swartz, C. H., Blute, N. K., Badruzzman, B., Ali, A., Brabander, D., Jay, J., et al. (2004). Mobility of arsenic in a Bangladesh aquifer: inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochimica et Cosmochimica Acta, 68, 539–4557.

    Article  Google Scholar 

  • Tessier, A., Campbell, P. G. C., Bisson, M. (1979). Sequential extractions for separation of particulate trace metals. Analytical Chemistry 51, 844–851.

  • Wang, S., & Mullingan, C. N. (2008). Speciation and surface structure of inorganic arsenic in solid phases: a review. Environment International, 34, 867–879.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombic, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436, 309–323.

    Article  CAS  Google Scholar 

  • Zheng, Y., van Geen, A., Stute, M., Dhar, R., Mo, Z., Cheng, Z., et al. (2005). Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: implications for deeper aquifers as drinking water sources. Geochimica et Cosmochimica Acta, 69, 5203–5218.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalsangzela Sailo.

Appendix

Appendix

Table 4 Groundwater quality of Jorhat District (mg/l) and EC (μs/cm)
Table 5 List of the groundwater quality parameters analyzed and name of the experiment or instrument
Table 6 List of analytical instruments and their model/manufacturer used for the analysis of groundwater and sediment parameters

Total metal concentration in the sediments analyzed using EPA-3052 digestion procedure for copper (Cu), zinc (Zn), and chromium (Cr).

Fig. 7
figure 7

Total copper (Cu) concentration in the sediment core samples along the depth profile at locations a 1A; b 1B

Fig. 8
figure 8

Total zinc (Zn) concentration in the sediment core samples along the depth profile at locations a 1A; b 1B

Fig. 9
figure 9

Total cadmium (Cd) concentration in the sediment core samples along the depth profile at locations a 1A; b 1B

Fig. 10
figure 10

Total chromium (Cr) concentration in the sediment core samples along the depth profile at locations a 1A; b 1B

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sailo, L., Mahanta, C. Arsenic mobilization in the Brahmaputra plains of Assam: groundwater and sedimentary controls. Environ Monit Assess 186, 6805–6820 (2014). https://doi.org/10.1007/s10661-014-3890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3890-7

Keywords

Navigation