Skip to main content

Advertisement

Log in

Structural controls on groundwater flow in a fractured bedrock aquifer underlying an agricultural region of northwestern New Brunswick, Canada

Contrôles structuraux sur les écoulements souterrains d’un aquifère de roche fracturée au droit d’une région agricole au nord-ouest de New Brunswick au Canada

Controles estructurales sobre el flujo de agua subterránea en un acuífero de basamento fracturado subyacente a una región agrícola en el noroeste de New Brunswick, Canadá

加拿大新布伦瑞克省西北部农业区断裂基岩含水层中地下水的结构控制因素

Controlos estruturais sobre o fluxo de águas subterrâneas num aquífero de rocha fraturada subjacente a uma região agrícola no noroeste de New Brunswick, Canadá

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A hydrogeological study was conducted in northwestern New Brunswick, Canada, to improve the predictability of fracture-dominated groundwater flow within folded bedrock composed of fine-grained turbidites. Borehole televiewer logging and outcrop mapping, integrated with hydraulic packer tests revealed enhanced hydraulic conductivity associated with northeasterly striking bedding-plane fractures formed during folding and flexural slip. These fractures impart azimuthal anisotropy to the aquifer because of moderately dipping fold limbs. High-angle fractures form a well-developed non-stratabound network, comprising two open fracture sets striking NNE parallel to the current direction of principal stress, and WNW parallel to the direction of principal stress that dominated during the Acadian orogeny. The subset of fractures showing significant oxidation, deemed most important to the groundwater flow system, is dominated by bedding-plane and high-angle fractures striking near-parallel to the maximum principal stress direction, resulting in extensional opening and enhanced hydraulic conductivities. An equivalent porous media model, incorporating anisotropy and varying hydraulic conductivity with depth, indicates that horizontal flow dominates the aquifer with relatively minor exchange between different model layers. These findings have implications for understanding flow directions in the Black Brook Watershed and elsewhere in the Matapédia Basin where fractures formed under similar stress conditions.

Résumé

Une étude hydrogéologique a été conduite au nord-ouest de New Brunswick au Canada pour améliorer la prévision des écoulements souterrains dominés par la fracturation, au sein d’un socle plissé composé de turbidites à grains fins. Les opérations d’inspection télévisée de forage et la cartographie des affleurements, combinées avec des tests hydrauliques entre packers, révèlent une conductivité hydraulique plus forte en liaison avec des plans de fractures orientés nord-est formés durant le plissement et le glissement de la flexure. Ces fractures confèrent une anisotropie directionnelle à l’aquifère en raison d’un pendage modéré des couches plissées. Les fractures à angle élevé développent un réseau indépendant des strates, comprenant deux ensembles de fractures ouvertes de direction NNE, parallèles à la direction de contrainte principale dominante pendant l’orogénèse acadienne. Le sous-ensemble de fractures qui montre une oxydation significative, considéré comme le plus important pour le système d’écoulement des eaux souterraines, est dominé par des plans de stratification et des fractures d’angles élevés de direction subparallèle à la direction de la contrainte maximale principale, avec pour conséquence une ouverture en extension et des perméabilités plus élevées. Un modèle de milieux poreux équivalent, incorporant l'anisotropie et la conductivité hydraulique variable avec la profondeur, indique que l'écoulement horizontal domine dans la couche aquifère avec des échanges relativement mineurs entre les différentes couches du modèle. Ces résultats ont des implications sur la compréhension des directions d’écoulements dans le bassin versant de Black Brook et ailleurs dans le bassin de Matapédia où les fractures se sont formées sous des conditions de contraintes similaires.

Resumen

Se llevó a cabo un estudio hidrogeológico en el noroeste de New Brunswick, Canadá, para mejorar la predictibilidad del flujo de agua subterránea dominado por fracturas dentro del basamento plegado compuesto de turbiditas de grano fino. El registro de videos de perforaciones y el mapeo de afloramientos, integrados con pruebas hidráulicas con packer revelaron una conductividad hidráulica enriquecida asociada con fracturas de estratificación planas de rumbo noreste formadas durante el plegamiento y flexo deslizamiento. Estas fracturas provocan una anisotropía azimutal en el acuífero debido a que los limbos de los pliegues tienen un buzamiento moderado. Fracturas de alta ángulo forman una red bien desarrollada de un sistema no estratoligada, comprendiendo dos conjuntos de fracturas abiertas con rumbo NNE paralelo a la dirección actual de la tensión principal, y WNW paralela a la dirección de la tensión principal que dominó durante la orogenia Acadiana. El subconjunto de fracturas que muestra una oxidación significativa, asociado mayormente al sistema de flujo de agua subterránea, está dominado por planos de estratificación y fracturas de alto ángulo con rumbo prácticamente paralelo a la dirección de máxima tensión principal, lo que resulta en una apertura extensional y conductividades hidráulicas aumentadas. Un modelo de medio poroso equivalente, que incorpora anisotropía y variaciones de conductividad hidráulica con la profundidad, indican que el flujo horizontal domina el acuífero con un relativamente pequeños intercambios entre las diferentes capas del modelo. Estos hallazgos tienen implicancia para entender las direcciones de flujo en la Black Brook Watershed y en cualquier otro lugar en la cuenca Matapédia donde las fracturas se formaron bajo condiciones similares de tensión.

摘要

在加拿大新布伦瑞克省西北部进行了水文地质研究,以增进由细颗粒浊积岩组成的皱褶基岩内断裂主导的地下水流的看预测性。钻孔视频录井和出露填图并结合水力压水试验揭示了与皱褶和曲滑期间形成的东北向层理面断裂相关的、增强的水力传导率。因为皱褶体中度倾斜,这些断裂给含水层传递了方位各向异性。高角度断裂形成了发育良好的非层控网络,包括两个开放的断裂组,走向北北东的断裂组平行于目前主要应力方向,走向西北西的断裂组平行于阿卡迪亚造山运动期间主导的主要应力方向。有显著氧化的断裂亚组被认为对地下水流系统来说最重要,受走向与最大主要应力方向接近平行的节理面及高角度断裂控制,导致缝隙扩大及水力传导率增加。各向异性和随深度变化的水力传导率合并一起的等同孔隙介质模型显示,水平流主导着含水层,不同模型层之间的交换相对较少。这些发现对了解Black Brook流域的水流方向及Matapédia盆地中相似应力条件下形成断裂的其他地方的水流方向有重要启示作用。

Resumo

Foi realizado um estudo hidrogeológico no noroeste de New Brunswick, no Canadá, para melhorar a previsibilidade do fluxo de águas subterrâneas dominado por fraturas no bedrock composto por turbiditos de granulometria fina afetados por dobramentos. Um furo com registo de imagem e mapeamento de afloramentos, juntamente com testes packer hidráulicos revelou condutividade hidráulica melhorada associada a fraturas de planos de estratificação de orientação NE formados durante o movimento de dobramento e flexão. Estas fraturas transmitem anisotropia azimutal ao aquífero devido à moderada inclinação dos flancos da dobra. Fraturas de elevado ângulo formam uma rede não estratificada bem desenvolvida, composta por dois conjuntos de fraturas abertas orientadas a NNE, paralelas à direção de tensão principal atual, e WNW, paralelas à direção de tensão principal que dominou durante a orogenia Acadiana. O subconjunto de fraturas mostrando oxidação significativa, considerado o mais importante para o sistema de fluxo de águas subterrâneas, é dominado por planos de estratificação e fraturas de elevado ângulo quase paralelas à direção principal de tensão máxima, resultando em aberturas extensas e condutividade hidráulica elevada. Um modelo equivalente de meio poroso, incorporando anisotropia e variação da condutividade hidráulica com a profundidade, indica que o fluxo horizontal domina o aquífero, com trocas relativamente menores entre as diferentes camadas do modelo. Estes resultados têm implicações para a compreensão das direções de fluxo na Bacia Hidrográfica de Black Brook e noutros locais da Bacia de Matapédia, onde as fraturas são formadas sob condições de tensão semelhantes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adams J (1989) Postglacial faulting in eastern Canada: nature, origin and seismic hazard implications. Tectonophysics 163(3):323–331

    Article  Google Scholar 

  • Barton CA, Zoback MD (1992) Self-similar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon Pass Scientific Drill Hole. J Geophys Res 97(B4):5181

    Article  Google Scholar 

  • Beach A (1977) Vein arrays, hydraulic fractures and pressure-solution structures in a deformed flysch sequence S.W. England. Tectonophysics 40(3–4):201–225. doi:10.1016/0040-1951(77)90066-X

    Article  Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York, 567 pp

  • Boutt DF, Diggins P, Mabee S (2010) A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeol J 18(8):1839–1854

    Article  Google Scholar 

  • Carroll J (2003) Geology of the Kedgwick, Gounamitz River, States Brook, and Menneval map areas (NTS 21 O/11, 21 O/12, 21 O/13, and 21 O/14), Restigouche County, New Brunswick. Mineral Resource Report 2003–4, New Brunswick Department of Natural Resources, Fredericton, NB

  • CCA (Council of Canadian Academies) (2009) The sustainable management of groundwater in Canada. Report of the Expert Panel on Groundwater, Ottawa

  • Chow LT, Rees, HW (2006) Impacts of intensive potato production on water yield and sediment load: Black Brook Experimental Watershed—1992–2002 summary. Potato Research Centre, AAFC, Fredericton, NB, 26 pp

  • Chow L, Xing Z, Benoy G, Rees HW, Meng F, Jiang Y, Daigle JL (2011) Hydrology and water quality across gradients of agricultural intensity in the Little River watershed area, New Brunswick, Canada. J Soil Water Conserv 66(1):71–84. doi:10.2489/jswc.66.1.71

    Article  Google Scholar 

  • Corkal D, Schutzman W, Hilliard CR (2004) Rural water safety from the source to the on-farm tap. J Toxic Environ Health A 67(20–22):1619–1642. doi:10.1080/15287390490491918

    Article  Google Scholar 

  • Cox D, Lewis P (1966) The statistical analysis of series of events. Wiley, Chichester, UK, 285 pp

  • Craig HydroGeoLogic (1995) A municipal water supply wellfield protection study for the village of Saint Andre, New Brunswick. Final report, Craig HydroGeoLogic, Maces Bay, NB

  • Danielescu S, Chow L, Li S (2012) Comparison of digital filtering methods for hydrograph separation in a small stream in Atlantic Canada. CGU/CWRA Conf, Banff, AB, 5–8 June 2012

  • Doe T, Remer J (1980) Analysis of constant-head well tests in non-porous fractured rock. In: Third Invitational Well-Testing Symposium – Well testing in low permeability environments. Berkeley, California, pp 84–89

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, Chichester, UK, 506 pp

  • Engelder T (1982) Is there a genetic relationship between selected regional joints and contemporary stress within the lithosphere of North America? Tectonics 1(2):161–177. doi:10.1029/TC001i002p00161

    Article  Google Scholar 

  • Engelder T (1985) Loading paths to joint propagation during a tectonic cycle: an example from the Appalachian Plateau. J Struct Geol 7:459–476

    Article  Google Scholar 

  • Engelder T, Geiser P (1980) On the use of regional joint sets as trajectories of paleostress fields during the development of the Appalachian Plateau, New York. J Geophys Res Solid Earth 85(B11):6319–6341

    Article  Google Scholar 

  • Environment Canada (2012) Canadian climate normals for St. Leonard 1971–2000. Environment Canada, Ottawa. http://climate.weatheroffice.gc.ca/climate_normals/results_e.html?stnID=6256&autofwd=1. Accessed 23 February 2012

  • Faure S, Tremblay A, Angelier J (1996) Alleghanian paleostress reconstruction in the northern Appalachians: intraplate deformation between Laurentia and Gondwana. Geol Soc Am Bull 108(11):1467–1480

    Article  Google Scholar 

  • Faure S, Tremblay A, Malo M (2004) Reconstruction of Taconian and Acadian paleostress regimes in the Quebec and northern New Brunswick Appalachians. Can J Earth Sci 41(5):619–634

    Article  Google Scholar 

  • Gallagher RS (1997) Evaluation of groundwater quality at two hydrogeologically distinct agricultural watersheds in New Brunswick. MSc Thesis, University of New Brunswick, Canada, 250 pp

  • Gburek WJ, Folmar GJ (1999) Patterns of contaminant transport in a layered fractured aquifer. J Contam Hydrol 37(1–2):87–109. doi:10.1016/S0169-7722(98)00158-2

    Article  Google Scholar 

  • Gburek WJ, Folmar G, Urban JB (1999) Field data and ground water modeling in a layered fractured aquifer. Ground Water 37(2):175–184. doi:10.1111/j.1745-6584.1999.tb00972.x

    Article  Google Scholar 

  • Geiser P, Engelder T (1983) The distribution of layer parallel shortening fabrics in the Appalachian foreland of New York and Pennsylvania: evidence for two non-coaxial phases of the Alleghanian orogeny. Geol Soc Am Mem 158:161–176. doi:10.1130/MEM158-p161

    Article  Google Scholar 

  • Gillespie PA, Howard CB, Walsh JJ, Watterson J (1993) Measurement and characterisation of spatial distributions of fractures. Tectonophysics 226(1–4):113–141. doi:10.1016/0040-1951(93)90114-Y

    Article  Google Scholar 

  • Gross MR, Eyal Y (2007) Throughgoing fractures in layered carbonate rocks. Geol Soc Am Bull 119(11–12):1387–1404. doi:10.1130/0016-7606(2007)119[1387:TFILCR]2.0.CO;2

    Article  Google Scholar 

  • Hancock PL, Engelder T (1989) Neotectonic joints. Geol Soc Am Bull 101(10):1197–1208

    Article  Google Scholar 

  • Heald MT (1959) Significance of stylolites in permeable sandstones. J Sediment Res 29(2):251–253. doi:10.1306/74D708F3-2B21-11D7-8648000102C1865D

    Google Scholar 

  • Health Canada (2012) Guidelines for Canadian drinking water quality. Summary table. http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/2012-sum_guide-res_recom/index-eng.php.Accessed February 2013

  • Heidbach O, Tingay M, Barth A et al (2010) Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics 482(1):3–15

    Article  Google Scholar 

  • Irving E (1977) Drift of the major continental blocks since the Devonian. Nature 270:304–309

    Article  Google Scholar 

  • Jiang Y, Somers G, Mutch J (2004) Application of numerical modelling to groundwater assessment and management in Prince Edward Island. 57th Can Geotech Conf, 5th Joint Conf IAH-CNC and CGS, Quebec, 25–27 October 2004, Session 3B1, pp 2–9

  • Khaleel R (1989) Scale dependence of continuum models for fractured basalts. Water Resour Res 25:1847–1855

    Article  Google Scholar 

  • Kierstead R (1993) Hydraulic conductivity of fractured bedrock near Saint Andre, New Brunswick. University of New Brunswick, Fredericton, NB, 67 pp

  • Kirkwood D, Savard MM, Chi G (2001) Microstructural analysis and geochemical vein characterization of the Salinic event and Acadian Orogeny: evaluation of the hydrocarbon reservoir potential in eastern Gaspé. Bull Can Petrol Geol 49(2):262–281. doi:10.2113/49.2.262

    Article  Google Scholar 

  • Langmaid KK, MacMillan JK, Losier JG (1980) Soils of Madawaska County, New Brunswick. 8th report of the New Brunswick Soil Survey, Agriculture Canada, Ottawa, 186 pp

  • Lefebvre A, Eilers W, Chunn B (2005) Environmental sustainability of Canadian agriculture. Agri-environmental indicator report series, Report 2, Agricultural and Agri-Food Canada, Ottawa, 220 pp

  • Lemieux J-M, Therrien R, Kirkwood D (2006) Small scale study of groundwater flow in a fractured carbonate-rock aquifer at the St-Eustache quarry, Québec, Canada. Hydrogeol J 14(4):603–612. doi:10.1007/s10040-005-0457-2

    Article  Google Scholar 

  • Lemieux J-M, Kirkwood D, Therrien R (2009) Fracture network analysis of the St-Eustache quarry, Quebec, Canada, for groundwater resources management. Can Geotech J 46(7):828–841. doi:10.1139/T09-022

    Article  Google Scholar 

  • Li Q (2013) Assessing land use impacts on groundwater quality in an agricultural watershed. MSc Thesis, University of New Brunswick, Canada, 121 pp

  • Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51(5):341–352

    Article  Google Scholar 

  • Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18(3):645–658. doi:10.1029/WR018i003p00645

    Article  Google Scholar 

  • Malo M (2004) Paleogeography of the Matapédia basin in the Gaspé Appalachians: initiation of the Gaspé Belt successor basin. Can J Earth Sci 41(5):553–570. doi:10.1139/e03-100

    Article  Google Scholar 

  • Marshall IB, Schut P, Ballard MC (1999) A national ecological framework for Canada: attribute data. Environmental Quality Branch, Ecosystems Science Directorate, Environment Canada and Research Branch, Agriculture and Agri-Food Canada, Ottawa

  • Merin IS (1992) Conceptual model of ground water flow in fractured siltstone based on analysis of rock cores, borehole geophysics, and thin sections. Ground Water Monit Remediat 12(4):118–125. doi:10.1111/j.1745-6592.1992.tb00070.x

    Article  Google Scholar 

  • Michalski A, Britton R (1997) The role of bedding fractures in the hydrogeology of sedimentary bedrock: evidence from the Newark Basin, New Jersey. Ground Water 35(2):318–327. doi:10.1111/j.1745-6584.1997.tb00089.x

    Article  Google Scholar 

  • Milburn P (1996) Leaching of nitrates from Atlantic cropping system / Update on groundwater quality in the NB potato belt. Presented at AACE’s Agriculture and Groundwater Quality Workshop, Grand Falls, NB, 11 April 1996, Agricultural Advisory Committee on the Environment, Washington, DC

  • Morin RH, Savage WZ (2002) Topographic stress perturbations in southern Davis Mountains, west Texas, 2: hydrogeologic implications. J Geophys Res Solid Earth 107(B12):ETG 6-1–ETG 6-10

    Article  Google Scholar 

  • Morin RH, Carleton GB, Poirier S (1997) Fractured-aquifer hydrogeology from geophysical logs: the Passaic Formation, New Jersey. Ground Water 35(2):328–338. doi:10.1111/j.1745-6584.1997.tb00090.x

    Article  Google Scholar 

  • Muldoon M, Simo T, Bradbury K (2001) Correlation of hydraulic conductivity with stratigraphy in a fractured-dolomite aquifer, northeastern Wisconsin, USA. Hydrogeol J 9(6):570–583. doi:10.1007/s10040-001-0165-5

    Article  Google Scholar 

  • Neill and Gunther Ltd. (2003) Groundwater exploration report, Saint-Andre. Project no. 40817, Neill and Gunther, Fredericton, NB

  • Nelson RA (2001) Geologic analysis of naturally fractured reservoirs. Gulf Professional, Houston, TX, 332 pp

  • Nickelsen RP, Hough VND (1967) Jointing in the Appalachian Plateau of Pennsylvania. Geol Soc Am Bull 78(5):609–630

    Article  Google Scholar 

  • Odling NE, Gillespie P, Bourgine B et al (1999) Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs. Pet Geosci 5(4):373–384. doi:10.1144/petgeo.5.4.373

    Article  Google Scholar 

  • Pollock D (1998) MODPATH, documentation of computer programs to compute and display pathlines using results from U.S. Geological Survey modular three-dimensional finite difference groundwater flow model. US Geol Surv Open-File Rep 89–381, 188 pp

  • Power JF, Schepers JS (1989) Nitrate contamination of groundwater in North America. Agric Ecosyst Environ 26(3–4):165–187. doi:10.1016/0167-8809(89)90012-1

    Article  Google Scholar 

  • Price NJ, Cosgrove JW (1990) Analysis of geological structures. Cambridge University Press, Cambridge

  • Priest SD (1993) Discontinuity analysis for rock engineering. Springer, Heidelberg, Germany, 473 pp

  • Rampton VN, Gauthier RC, Thibault J, Seaman AA (1984) Quaternary geology of New Brunswick, Memoir 416, Geological Survey of Canada, Ottawa

  • Rayne T, Bradbury K, Muldoon M (2001) Delineation of capture zones for municipal wells in fractured dolomite, Sturgeon Bay, Wisconsin, USA. Hydrogeol J 9(5):432–450. doi:10.1007/s100400100154

    Article  Google Scholar 

  • Razowska L, Sadurski A (2004) Nitrates in groundwater. IAH Selected Papers on Hydrogeology 5, Taylor and Francis, London

  • Rivard C, Michaud Y, Lefebvre R, Deblonde C, Rivera A (2008) Characterization of a regional aquifer system in the Maritimes Basin, eastern Canada. Water Resour Manag 22(11):1649–1675. doi:10.1007/s11269-008-9247-7

    Article  Google Scholar 

  • Robin P-YF, Jowett CE (1986) Computerized density contouring and statistical evaluation of orientation data using counting circles and continuous weighting functions. Tectonophysics 121(2–4):207–223. doi:10.1016/0040-1951(86)90044-2

    Article  Google Scholar 

  • Sbar ML, Sykes LR (1973) Contemporary compressive stress and seismicity in eastern North America: an example of intra-plate tectonics. Geol Soc Am Bull 84(6):1861–1882

    Article  Google Scholar 

  • Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276(1–4):137–158. doi:10.1016/S0022-1694(03)00064-7

    Article  Google Scholar 

  • Scheidegger AE (1981) The geotectonic stress field and crustal movements. Tectonophysics 71(1–4):217–226. doi:10.1016/0040-1951(81)90067-6

    Article  Google Scholar 

  • Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractured rocks, 2nd edn. Springer, Heidelberg, Germany, 415 pp

  • SNB (Service New Brunswick Canada) (2011) Geographic data and and maps: products and services. http://www.snb.ca/gdam-igec/e/2900e_1.asp. Accessed 31 October 2011

  • Snow DT (1968) Rock fracture spacings, openings, and porosities. J Soil Mech Found Div 94(1):73–91

    Google Scholar 

  • St Peter C (1978) Geology of parts of Restigouche: Victoria and Madawaska counties, northwest New Brunswick. NTS 21, New Brunswick Department of Natural Resources, Fredericton, NB

  • Stringer P, Pickerill R (1980) Structure and sedimentology of the Siluro-Devonian between Edmundston and Grand Falls, New Brunswick: the geology of northeastern Maine and neighboring New Brunswick. New England Intercollegiate Geological Conference, Presque Isle, ME, October 1980, pp 262–277

  • Terzaghi RD (1965) Sources of error in joint surveys. Geotechnique 15(3):287–304

    Article  Google Scholar 

  • Valentin O (2002) Numerical simulation of groundwater flow and nitrate transport in an agricultural watershed (New Brunswick). MSc Thesis, University of New Brunswick, 131 pp

  • van Staal CRV, Dewey JF, Niocaill CM et al (1998) The Cambrian-Silurian tectonic evolution of the northern Appalachians and British Caledonides: history of a complex, west and southwest Pacific-type segment of Iapetus. Geol Soc Lond Spec Publ 143(1):197–242

    Article  Google Scholar 

  • Wilson RA (2002) Geology of the Squaw Cap area (NTS 21 O/15d, e, f), Restigouche County, New Brunswick. In: Carroll BMW (ed) Current Research 2001. New Brunswick Department of Natural Resources and Energy; Minerals, Policy and Planning Division, Mineral Resource Report 2002–4, pp 155–196

  • Wilson RA, Burden ET, Bertrand R et al (2004) Stratigraphy and tectono-sedimentary evolution of the Late Ordovician to Middle Devonian Gaspé Belt in northern New Brunswick: evidence from the Restigouche area. Can J Earth Sci 41(5):527–551. doi:10.1139/e04-011

    Article  Google Scholar 

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6):1016–1024. doi:10.1029/WR016i006p01016

    Article  Google Scholar 

  • Yang Q, Zhao Z, Benoy G, Chow TL, Rees HW, Bourque CPA, Meng FR (2010) A watershed-scale assessment of cost-effectiveness of sediment abatement with flow diversion terraces. J Environ Qual 39(1):220–227

    Article  Google Scholar 

  • Ziegler TW (1976) Determination of rock mass permeability. Technical report S-76-2, US Army Engineer Waterways Experiment Station, Vicksburg, MI

  • Zoback ML (1992) First- and second-order patterns of stress in the lithosphere: the World Stress Map Project. J Geophys Res 97(B8):11703–11728

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Greg Bickerton and John Voralek from the Environment Canada’s National Water Research Institute (Burlington, ON) for conducting the constant head tests in the Black Brook Watershed. Special thanks go to Mona Levesque and Sylvie Lavoie from AAFC and Michael West for their assistance during field work. The authors acknowledge Dr. Yefang Jiang (AAFC) who initiated drilling of the boreholes during the early stages of the joint EC-AAFC groundwater research program in the BBW. Finally, the authors are also grateful to DF Boutt, JR Shackleton and an anonymous reviewer for thorough and insightful comments that improved this manuscript considerably. Funding for this study was provided by Environment Canada and Agriculture and Agri-Food A-Base projects, the New Brunswick Environmental Trust Fund, and NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron DesRoches.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DesRoches, A., Danielescu, S. & Butler, K. Structural controls on groundwater flow in a fractured bedrock aquifer underlying an agricultural region of northwestern New Brunswick, Canada. Hydrogeol J 22, 1067–1086 (2014). https://doi.org/10.1007/s10040-014-1134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1134-0

Keywords

Navigation