Skip to main content
Log in

A multidisciplinary-based conceptual model of a fractured sedimentary bedrock aquitard: improved prediction of aquitard integrity

Un modèle conceptuel d’un semi-perméable de substratum sédimentaire fracturé basé sur une approche multidisciplinaire: amélioration de la prévision de l’intégrité du semi-perméable

Un Modelo conceptual multidisciplinario de un acuitardo de roca sedimentaria fracturado: mejorar en la predicción de la integridad del acuitardo

基于多学科的破碎沉积基岩弱透水层概念模型:弱透水层整体性的预测水平得到改善

Modelo conceitual de aquífero sedimentar fraturado baseado em metologias multidisciplinares: melhorias na previsão da integridade de aquitardos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A hydrogeologic conceptual model that improves understanding of variability in aquitard integrity is presented for a fractured sedimentary bedrock unit in the Cambrian-Ordovician aquifer system of midcontinent North America. The model is derived from multiple studies on the siliciclastic St. Lawrence Formation and adjacent strata across a range of scales and geologic conditions. These studies employed multidisciplinary techniques including borehole flowmeter logging, high-resolution depth-discrete multilevel well monitoring, fracture stratigraphy, fluorescent dye tracing, and three-dimensional (3D) distribution of anthropogenic tracers regionally. The paper documents a bulk aquitard that is highly anisotropic because of poor connectivity of vertical fractures across matrix with low permeability, but with ubiquitous bed parallel partings. The partings provide high bulk horizontal hydraulic conductivity, analogous to aquifers in the system, while multiple preferential termination horizons of vertical fractures serve as discrete low vertical hydraulic conductivity intervals inhibiting vertical flow. The aquitard has substantial variability in its ability to protect underlying groundwater from contamination. Across widespread areas where the aquitard is deeply buried by younger bedrock, preferential termination horizons provide for high aquitard integrity (i.e. protection). Protection is diminished close to incised valleys where stress release and weathering has enhanced secondary pore development, including better connection of fractures across these horizons. These conditions, along with higher hydraulic head gradients in the same areas and more complex 3D flow where the aquitard is variably incised, allow for more substantial transport to deeper aquifers. The conceptual model likely applies to other fractured sedimentary bedrock aquitards within and outside of this region.

Résumé

Un modèle conceptuel hydrogéologique, qui améliore la compréhension de la variabilité spatiale de l’intégrité d’un semi-perméable, est présenté pour une unité de substratum sédimentaire fracturé du système aquifère Cambro-Ordovicien du milieu du continent nord-américain. Le modèle est dérivé de multiples études portant sur la formation silicoclastique St. Lawrence et les couches adjacentes, avec une large gamme d’échelles et de conditions géologiques. Ces études ont mis en œuvre des techniques multidisciplinaires comprenant des mesures au micro-moulinet en forage, du monitoring de forage multi-niveaux à haute résolution au sein d’intervalles discrets, du traçage avec traceur fluorescent et, régionalement, la distribution tri-dimensionnelle (3D) de traceurs anthropogéniques. Cet article étudie un volume de semi-perméable qui est fortement anisotrope à cause de la faible connectivité des fractures verticales qui traversent une matrice de faible perméabilité, mais comportant des diaclases ubiquistes parallèles à la stratification. Les diaclases génèrent une forte perméabilité horizontale, analogue à celle des aquifères du système, tandis que les multiples horizons de terminaison préférentielle des fractures verticales forment des intervalles discrets de faible perméabilité verticale qui inhibent l’écoulement vertical. Le semi-perméable a une variabilité substantielle de son aptitude à protéger l’eau souterraine sous-jacente de la contamination. Au sein des vastes zones où le semi-perméable est enfoui profondément sous des formations plus récentes, la terminaison préférentielle des horizons confère une forte intégrité au semi-perméable (i.e. une protection). La protection est réduite à proximité des vallées incisées où le relâchement des contraintes et l’altération ont augmenté le développement d’une porosité secondaire, comprenant une meilleure connexion des fractures à travers ces horizons. Ces conditions, ainsi que des gradients hydrauliques plus forts dans les mêmes zones et un flux 3D plus complexe là où le semi-perméable est variablement incisé, permettent un transport plus substantiel vers les aquifères plus profonds. Le modèle conceptuel s’applique probablement à d’autres semi-perméables de substratum sédimentaire fracturé au sein ou à l’extérieur de cette région.

Resumen

Se presenta un modelo hidrogeológico conceptual que mejora la comprensión de la variabilidad en la integridad del acuitardo para una unidad de roca sedimentaria fracturada en el sistema acuífero Cámbrico-Ordovícico del medio continente de América del Norte. El modelo se deriva de múltiples estudios sobre la formación silicoclástica de St. Lawrence y los estratos adyacentes a través de un rango de escalas y condiciones geológicas. Estos estudios emplearon técnicas multidisciplinarias que incluyen el registro del caudalímetro del pozo, el monitoreo discreto de alta resolución de multinivel de profundidad de los pozos, la estratigrafía de las fracturas, el trazado de colorantes fluorescentes y la distribución tridimensional (3D) de trazadores antropogénicos a nivel regional. El trabajo documenta un acuitardo que es altamente anisotrópico debido a la mala conectividad de las fracturas verticales a través de la matriz con baja permeabilidad, pero con separaciones extendidas en forma paralela en el lecho. Las divisiones proporcionan una conductividad hidráulica horizontal alta, análoga a acuíferos en el sistema, mientras que los horizontes de terminación preferencial múltiple de las fracturas verticales sirven como intervalos discretos de conductividad hidráulica vertical baja que inhiben el flujo vertical. El acuitardo tiene una variabilidad sustancial en su capacidad para proteger el agua subterránea subyacente de la contaminación. En áreas extensas donde el acuitardo está profundamente enterrado por un lecho rocoso más joven, los horizontes de terminación preferencial proporcionan una alta integridad del acuitardo (es decir, protección). La protección se reduce cerca de los valles, donde la liberación de estrés y la intemperie han mejorado el desarrollo de los poros secundarios, incluyendo una mejor conexión de las fracturas en estos horizontes. Estas condiciones, junto con mayores gradientes de la carga hidráulica en las mismas áreas y un flujo 3D más complejo donde el acuitardo está incidido de forma variable, permiten un transporte más importante hacia acuíferos más profundos. Es probable que el modelo conceptual se aplique a otros acuitardos de roca sedimentaria fracturados dentro y fuera de esta región.

摘要

这里展示了北美大陆中部寒武-奥陶含水层系统破碎沉积基岩单元能提高认识弱透水层整体性变化的水文地质概念模型。模型源自对不同尺度和各种地质条件下硅质碎屑St. Lawrence 地层和毗邻地层的多项研究。这些研究采用了多学科技术,包括钻孔流量测井、高分辨率深度分离多级井监测、断裂地层学方法、荧光染色示踪、区域人为示踪剂三维分布等。本文论述了一个整体弱透水层,这个弱透水层高度各相异性,因为穿过透水性低、但具有无所不在的地层平行缝隙的基质的垂直断裂联系度很差。缝隙提供了很高的整体横向水力传导率,与系统中含水层相似,而多个垂直断裂的优先终点层成为控制垂直水流的分离垂直水力传导率区间。弱透水层在保护下伏地下水免遭污染的能力上有很大的变化性。在弱透水层被年轻基岩深深掩埋的广大地区,有限终点层提供了很高的弱透水层整体性(即保护)。在切割的山谷附近,应力释放和风化增强了次生空隙发育,包括穿过这些层的联系度进一步改善,因此,保护作用降低。这些条件,伴随同一地区较高的水头梯度,以及更复杂的三维水流,造成弱透水层被处处分割,使更多的水流运移到深部含水层。概念模型还可以用于本地区或者其他地区断裂沉积基岩弱透水层中。

Resumo

Um modelo conceitual hidrogeológico que melhora o entendimento da variabilidade da integridade de aquitardos é apresentado para as unidades sedimentares fraturadas do sistema aquífero Cambro-Ordoviciano da América do Norte central. O modelo deriva de diversos estudos na Formação St. Lawrence, unidade siliciclástica e estratos adjacentes, em diversas escalas e condições geológicas. Estes estudos aplicaram técnicas multidisciplinares tais como perfilagem de poço com medidor de fluxo, poços de monitoramento multiníveis de alta resolução, estratigrafia de fraturas, testes com traçadores fluorescentes, e distribuição tridimensional (3D)regional de traçadores antropogênicos. O presente trabalho documenta um aquitardo altamente anisotrópico devido a baixa conectividade de fraturas verticais desenvolvidas na matriz de baixa permeabilidade, porém apresentando fraturas horizontais pervasivas no acamadamento. As fraturas horizontais proporcionam altas condutividades hidráulicas nesta direção, análogas à aquíferos no sistema, enquanto os múltiplos horizontes de terminação de fraturas verticais agem como intervalos discretos de baixa condutividade hidráulica vertical inibindo fluxo vertical. O aquitardo tem grande variabilidade em sua habilidade de proteger as águas subterrâneas subjacentes de potenciais fontes de contaminação. Ao longo de amplas áreas onde o aquitarde encontra-se sobreposto por unidades mais jovens, os horizontes de terminação preferencial propocionam alta integridade do aquífero (ou seja, alta proteção). A proteção diminui nas imediações de vales incisos onde o alívio de pressões litostáticas e intemperismo intensificaram o desenvolvimento de porosidade secundária, incluindo melhor conexão de fraturas através destes horizontes. Estas condições, em conjunto com maiores gradientes hidráulicos nas mesmas áreas e fluxos 3D mais complexos onde o aquitarde apresenta desenvolvimento de vales incisos, permitem maior transporte para aquíferos mais profundos. O modelo conceitual tem potencial aplicação para outros aquitardos sedimentares fraturados dentro ou fora da região estudada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alexander EC Jr, Lively RS (1995) Karst-aquifers, caves and sinkholes. In: Lively RS, Balaban NH (eds) Text supplement to the Geologic Atlas, Fillmore County, Minnesota. Minnesota Geological Survey County Atlas Series C-8, part C, Minnesota Geological Survey, St Paul, MN, pp 10–18

  • Alexander EC Jr, Green JA, Alexander SC, Spong RC (1996) Spring sheds, plate 9, 1:100,000. In: Falteisek J (ed) Geological atlas of Fillmore County, Minnesota. Minnesota Department of Natural Resources, Waters County Atlas C-8, part B, MDNR, St Paul, MN

  • Anderson JR, Runkel AC, Tipping RG, Barr K, Alexander EC Jr (2011) Hydrostratigraphy of a fractured urban aquitard. Geol Soc Am Field Guides 24:457–475

    Google Scholar 

  • Apotria T, Kaiser CJ, Cain BA (1994) Fracturing and stress history of the Devonian Antrim Shale, Michigan Basin. In: Nelson PP, Laubach SC (eds) Rock mechanics: models and measurements challenges from industry. Proceedings of the 1st North American Rock Mechanics Symposium, University of Texas at Austin, June 1–3, 1994. Balkema, Rotterdam, The Netherlands, pp 809–816

    Google Scholar 

  • Barry JD, Green JA, Steenberg JR (2015) Conduit flow in the Cambrian Lone Rock Formation, Southeast Minnesota, U.S.A. In: Doctor DH, Land L, Stephenson JB (eds) Sinkholes and the Engineering and Environmental Impacts of Karst: Proceedings of the Fourteenth Multidisciplinary Conference, October 5–9 2015. University of South Florida, Digital Collections, Rochester, MN, pp 31–42. Available at http://digital.lib.usf.edu/content/SF/S0/05/37/49/00001/K26-03300-Conduit_Flow_in_the_Cambrian_Lone_Rock_Formation_Southeast_Minne.pdf. Accessed February 2017

  • Batten WG, Brown TA, Mills PC, Sabin TJ (1997) Rock-stratigraphic nomenclature, lithology, and subcrop area of the Galena-Platteville bedrock unit in Illinois and Wisconsin. US Geol Surv Water Resour Invest Rep 97-4054-B

  • Bay West (2012) Revised future investigation strategy report, Blaine municipal wells, Blaine, Minnesota. Minnesota Pollution Control Agency Leak no. 14072/SR#328, Bay West Project no. J120213, Minnesota Pollution Control Agency, St Paul, MN

  • Berg JA (2003) Hydrogeologic cross sections, plate 8, 1:100,000. In: Falteisek J (ed) Geologic atlas of Goodhue County, Minnesota. Minnesota Department of Natural Resources, Waters County Atlas C-12, part B, MDMR, St Paul, MN

  • Black WH, Smith HR, Patton FD (1986) Multiple-level ground water monitoring with the MP system. In: Poceedings of the Surface and Borehole Geophysical Methods and Ground Water Instrumentation Conference and Exposition. Denver, CO, 15–17 October 1986, NWWA, Dublin, OH

  • Boutt DF, Diggins P, Mabee S (2010) A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeol J 18:1839–1854

    Article  Google Scholar 

  • Bouwer H, Rice RC (1976) A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423–428

    Article  Google Scholar 

  • Bradbury KR, Gotkowitz MB, Hart DJ, Eaton TT, Cherry JA, Parker BL, Borchardt MA (2006) Contaminant transport through aquitards: technical guidance for aquitard assessment. Water Res Found Res Rep 91133A, 144 pp

  • Bradbury KR, Rothschild ER (1985) A computerized technique for estimating the hydraulic conductivity of aquifers from specific capacity data. Ground Water 23(2):240–245

    Article  Google Scholar 

  • Burton WC, Plummer LN, Busenberg E, Lindsey BD, Gburek WJ (2002) Influence of fracture anisotropy on ground water ages and chemistry, Valley and Ridge Province, Pennsylvania. Groundwater 40(3):242–257

    Article  Google Scholar 

  • Cherry JA, Parker BL, Bradbury KR, Eaton TT, Gotkowitz MB, Hart DJ, Borchardt MA (2006) Contaminant transport through aquitards: a state-of-the-science review. Water Res Found Res Rep 91133A, 126 pp

  • Cherry JA, Parker BL, Keller C (2007) A new depth-discrete multilevel monitoring approach for fractured rock. Groundw Monit Remediat 27(2):57–70

    Article  Google Scholar 

  • Cooke ML, Simo JA, Underwood CA, Rijken P (2006) Mechanical stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow. Sed Geol 184(3–4):225–239

    Article  Google Scholar 

  • Craddock JP, Jackson M, van der Pluijm BA, Versical RT (1993) Regional shortening fabrics in eastern North America: far-field stress transmission from the Appalachian-Ouachita orogenic belt. Tectonics 12:257–264

    Article  Google Scholar 

  • County Well Index (2017) Database created and maintained by the Minnesota Geological Survey, University of Minnesota, with the assistance of the Minnesota Department of Health. http://www.health.state.mn.us/divs/eh/cwi/. Accessed May 2018

  • Dakota County Environmental Management (2003) Hastings area nitrate study final report: Dakota County Environmental Management March 2003 report, 90 pp. Available at http://www.co.dakota.mn.us/Environment/WaterQuality/WellsDrinkingWater/Documents/HastingsAreaNitrateStudy.pdf. Accessed May 2018

  • DATCP (2008) Groundwater quality: agricultural chemicals in Wisconsin groundwater. Wisconsin Department of Agriculture, Trade and Consumer Protection, Water Quality Section, ARM Publ. 180, 22 pp. https://datcp.wi.gov/Pages/Homepage.aspx. Accessed February 2017

  • Delin GN, Woodward DG (1984) Hydrogeologic setting and the potentiometric surfaces of regional aquifers in the Hollandale embayment, southeastern Minnesota, 1970–80. US Geol Surv Water Suppl Pap 2219, 56 pp

  • Eaton TT, Bradbury KR (2003) Hydraulic transience and the role of bedding fractures in a bedrock aquitard, southeastern Wisconsin, USA. Geophys Res Lett 30(3):1961

    Google Scholar 

  • Eaton TT, Anderson MP, Bradbury KR (2007) Fracture control of ground water flow and water chemistry in a rock aquitard. Groundwater 45(5):601–615

    Article  Google Scholar 

  • Ferguson HF (1967) Valley stress release in the Allegheny plateau. Bull Int Assoc Eng Geo 4(1):63–71

    Google Scholar 

  • Fisher JC, Twining BV (2011) multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 200708. US Geol Surv Sci Invest Rep 2010-5253

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

  • Gburek WJ, Urban JB (1990) The shallow weathered fracture layer in the near-stream zone. Groundwater 28(6):875–883

    Article  Google Scholar 

  • Gburek WJ, Folmar GJ, Urban JB (1999) Field data and ground water modeling in a layered fractured aquifer. Groundwater 37(2):175–184

    Article  Google Scholar 

  • Green JA, Alexander EC Jr, Marken WG, Alexander SC (2002) karst Hydrogeomorphic units, plate 10, 1:100,000. In: Falteisek J (ed) geologic atlas of Mower County, Minnesota. Minnesota Department of Natural Resources, Waters County atlas C-11, part B, MDNR, St Paul, MN

  • Green J, Luhmann A, Peters A, Runkel A, Alexander EC Jr, Alexander S (2008) Dye tracing within the St. Lawrence confining unit in southeastern Minnesota. In: Yuhr L, Alexander EC Jr, Beck B (eds) Proceedings of the 11th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, vol 183. ASCE, Washington, DC, pp 477–484. https://doi.org/10.1061/9780784410035

  • Green JA, Runkel AC, Alexander EC Jr (2012) Karst conduit flow in the Cambrian St. Lawrence formation, southeast Minnesota. USA Carbonates Evap 27(2):167–172

    Article  Google Scholar 

  • Gross MR, Engelder T (1991) A case for neotectonic joints along the Niagara escarpment. Tectonics 10(3):631–641

    Article  Google Scholar 

  • Haimson BC, Doe TW (1983) State of stress, permeability, and fractures in the Precambrian granite in northern Illinois. J Geophys Res 88:7355–7371

    Article  Google Scholar 

  • Hart DJ, Bradbury KR, Feinstein DT (2006) The vertical hydraulic conductivity of an aquitard at two spatial scales. Groundwater 44(2):201–211

    Article  Google Scholar 

  • Hass LD, Zambito J, Stewart K (2016) Wonewoc sandstone as potential conduit for Mississippi Valley-type mineralization. Geol Soc Am Abstr Prog 48(7)

  • Helsel DR, Hirsch RM (2002) Statistical methods in water resources. Hydrologic Analysis and Interpretation, chap A3. US Geol Surv Techniques Water Resour Invest, book 4. http://pubs.usgs.gov/twri/twri4a3/. Accessed February 2017

  • Heyl AV, West WS (1982) Outlying mineral occurrences related to the upper Mississippi Valley mineral district, Wisconsin, Iowa, Illinois, and Minnesota. Econ Geol 77:1803–1817

    Article  Google Scholar 

  • Heyl AV, Agnew AF Jr, Lyons EJ, Behre CH Jr (1959) The geology of the upper Mississippi Valley zinc-lead district. US Geol Sur Prof Pap 309, 310 pp

  • Hvorslev MJ (1951) Time lag and soil permeability in ground water observations. US Army Eng Waterways Exp Station Bull 36, 50 pp

  • Jasechko S, Perrone D, Befus KM, Cardenas MB, Ferguson G, Gleeson T, Luijendijk E, McDonnel JJ, Taylor RG, Wada Y, Kirchner JW (2017) Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nat Geosci 10:425–429

    Article  Google Scholar 

  • Kanivetsky R, Cleland J (1990) Hydrogeology, Plate 5, 1:150,000 and 1:250,000. In: Swanson L, Meyer GN (eds) Geologic atlas of Washington County, Minnesota. Minnesota Geological Survey County Atlas C-5, MGS, St Paul, MN

  • Luczaj JL, Masarik K (2015) Groundwater quantity and quality issues in a water-rich region: examples from Wisconsin, USA. Resources 4(2):323–357

    Article  Google Scholar 

  • Luhmann AJ, Covington MD, Peters AJ, Alexander S, Anger C, Green JA, Runkel AC, Alexander EC Jr (2011) Classification of thermal patterns at Karst Springs and cave streams. Groundwater 49:324–335

    Article  Google Scholar 

  • Marechal JC, Dewandel B, Subrahmanyam K (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resour Res 40, W11508

    Article  Google Scholar 

  • McGarry CS (2000) Regional fracturing of the galena-Platteville aquifer in Boone and Winnebago counties, Illinois: geometry, connectivity and tectonic significance. MSc Thesis, University of Illinois, Urbana-Champaign, IL, 209 pp

  • McMahon P (2001) Aquifer/aquitard interfaces: mixing zones that enhance biogeochemical reactions. Hydrogeol J 9(1):34–43

    Article  Google Scholar 

  • Metropolitan Council (2014) Twin Cities Metropolitan Area regional groundwater flow model, version 3.0, prepared by Barr Engineering. Metropolitan Council, St. Paul, MN, 80 pp. Available at https://metrocouncil.org/Wastewater-Water/Planning/Water-Supply-Planning/Metro-Model-3.aspx. Accessed May 2018

  • Meyer J (2010) Westbay multilevel system pneumatic slug testing and pulse testing standard operating procedures. University of Guelph, ON and Minnesota Geological Survey, St Paul, MN, 8 pp

  • Meyer JR (2013) A high resolution vertical gradient approach to hydrogeologic unit delineation in fractured sedimentary rocks. PhD Thesis, University of Guelph, Guelph, ON, 225 pp

  • Meyer JR, Parker BL, Cherry JA (2008) Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock. Environ Geol 56:27–44

    Article  Google Scholar 

  • Meyer JR, Parker BL, Cherry JA (2014) Characteristics of high resolution hydraulic head profiles and vertical gradients in fractured sedimentary rocks. J Hydrol 517:493–507

    Article  Google Scholar 

  • Meyer JR, Parker BL, Arnaud E, Runkel AC (2016) Combining high resolution vertical gradients and sequence stratigraphy to delineate hydrogeologic units for a contaminated sedimentary rock aquifer system. J Hydrol 534:505–523

    Article  Google Scholar 

  • Michalski A, Britton R (1997) The role of bedding fractures in the hydrogeology of sedimentary bedrock: evidence from the Newark Basin, New Jersey. Ground Water 35(2):318–327

    Article  Google Scholar 

  • MNDNR CGM (2017) Water level data from Minnesota Department of Natural Resources Cooperative Groundwater Monitoring. http://www.dnr.state.mn.us/waters/cgm/index.html. Accessed February 2017

  • Morey GB, Lively RS, Mossler JH, Hauck SA (1994) Geochemical investigation of minor and trace elements in the acid-insoluble residues of Lower Paleozoic carbonate and related strata, southeastern Minnesota: the database. Minnesota Geol Surv Inform Circ 41, 78 pp

  • Morin R, Godin R, Nastev M, Rouleau A (2007) Hydrogeologic controls imposed by mechanical stratigraphy in layered rocks of the Châteauguay River Basin, a U.S.–Canada transborder aquifer. J Geophys Res 112, B04403

  • Mossler JH (2008) Paleozoic stratigraphic nomenclature for Minnesota. Minnesota Geol Surv Rep Invest 65, 76 pp

  • Muldoon MA, Simo JA, Bradbury KR (2001) Correlation of hydraulic conductivity with stratigraphy in a fractured-dolomite aquifer, northeastern Wisconsin, USA. Hydrogeol J 9(6):570–583

    Article  Google Scholar 

  • Neuman SP, Witherspoon PA (1972) Field determination of the hydraulic properties of leaky multiple aquifer systems. Water Resour Res 8(5):1284–1298

    Article  Google Scholar 

  • Olcott PO (1992) Ground Water Atlas of the United States, Segment 9-Iowa, Michigan, Minnesota, Wisconsin. US Geol Surv Hydrol Invest Atlas 730-J, 31 pp

  • Paillet F, Lundy J, Tipping R, Runkel A, Reeves L, Green J (2000) Hydrogeologic characterization of six sites in southeastern Minnesota using borehole flowmeters and other geophysical logs. US Geol Surv Water Res Inv Rep 00-4142, 33 pp

  • Peffer JR (1991) Complex aquifer–aquitard relationships at an Appalachian plateau site. Groundwater 29(2):209–217

    Article  Google Scholar 

  • Perrin J, Parker BL, Cherry JA (2011) Assessing the flow regime in a contaminated fractured and karstic dolostone aquifer supplying municipal water. J Hydrol 400(3–4):396–410. https://doi.org/10.1016/j.jhydrol.2011.01.055

    Article  Google Scholar 

  • Petersen TA (2005) Hydrogeologic cross sections, plate 9, 1:100,000. In: Falteisek J (ed) Geologic atlas of Wabasha County, Minnesota. Minnesota Department of Natural Resources, Waters County Atlas C-14, part B, MDNR, St Paul, MN

  • Runkel AC (1994) Deposition of the uppermost Cambrian (Croixan) Jordan sandstone, and the nature of the Cambrian-Ordovician boundary in the Upper Mississippi Valley. Geol Soc Am Bull 106:492–506

    Article  Google Scholar 

  • Runkel AC, Tipping RG, Alexander EC Jr, Green JA, Mossler JH, Alexander SC (2003) Hydrogeology of the Paleozoic bedrock in southeastern Minnesota. Minnesota Geol Surv Rep Invest 61, 105 pp, 1 map

  • Runkel AC, Tipping RG, Alexander EC Jr, Alexander SC (2006a) Hydrostratigraphic characterization of intergranular and secondary porosity in part of the Cambrian sandstone aquifer systems of the cratonic interior of North America: improving predictability of hydrogeologic properties. Sediment Geol 184:281–304

    Article  Google Scholar 

  • Runkel AC, Tipping RG, Mossler JH, Bauer EJ (2006b) Hydrogeology and mapping investigation of the St. Lawrence Formation in the Twin Cities Metropolitan area. Minnesota Geol Surv Open File Rep 06-04, 20 pp

  • Runkel AC, Miller JF, McKay RM, Palmer AR, Taylor JF (2007a) High-resolution sequence stratigraphy of lower Paleozoic sheet sandstones in Central North America: the role of special conditions of cratonic interiors in development of stratal architecture. Geol Soc Am Bull 119(7/8):860–881

    Article  Google Scholar 

  • Runkel AC, Mossler JH, Tipping RG (2007b) The Lake Elmo downhole logging project: hydrostratigraphic characterization of fractured bedrock at a perfluorochemical contamination site. Minnesota Geol Surv Open File Rep 07-5, 12 pp

  • Runkel AC, Tipping RG, Mossler JH (2008) Geology in support of groundwater management for the northwestern Twin Cities Metropolitan area. Minnesota Geol Surv Open File Rep 08-4, 46 pp

  • Runkel AC, Steenberg JR, Tipping RG, Retzler AJ (2013) Geologic controls on groundwater and surface water flow in southeastern Minnesota and its impact on nitrate concentrations in streams. Minnesota Geol Surv Open File Rep 14-2, 70 pp

  • Runkel AC, Tipping RG, Green JA, Jones PM, Meyer JR, Parker BL, Steenberg JR, Retzler AJ (2014) Hydrogeologic properties of the St. Lawrence aquitard, southeastern Minnesota. Minnesota Geol Surv Open File Rep 14-04, 119 pp

  • Snow D (1968) Rock fracture spacings, openings, and porosities. J Soil Mech Found Div 94:73–92

    Google Scholar 

  • St. Claire J, Moon S, Holbrook WS, Perron JT, Riebe CS, Martel SJ, Carr B, Harman C, Singha K, Richter DDEB (2015) Geophysical imaging reveals topographic stress control of bedrock weathering. Science 350(6260):534–538

    Article  Google Scholar 

  • Steenberg JR, (2014) bedrock geology, plate 2, 1:100,000. In: Setterholm DR (ed) Geologic atlas of Winona County, Minnesota. Minnesota Geol Surv County Atlas Ser C-34, part A

  • Steenberg JR, Retzler AJ (2016) Bedrock geology, plate 2, 1:100,000. In: Bauer EJ (ed) Geologic atlas of Washington County, Minnesota. Minnesota Geol Surv County Atlas Ser C-39, part A

  • Swanson SK, Bahr JM, Bradbury KR, Anderson KM (2006) Evidence for preferential flow through sandstone aquifers in southern Wisconsin. Sediment Geol 184:331–342

    Article  Google Scholar 

  • Terzaghi K (1925) Erdbaumechanik auf Bodenphysikalischer Grundlage [Earth mechanics based on soil physics]. Deuticke, Vienna

    Google Scholar 

  • Terzaghi RD (1965) Sources of error in joint surveys. Géotechnique 15(3):287–304

    Article  Google Scholar 

  • Tipping RG (2002) Karst features of Wabasha County, Minnesota. In: Runkel AC (ed) Contributions to the geology of Wabasha County. Minnesota Geol Surv Rep Invest 59:38–46

    Google Scholar 

  • Tipping RG (2012) Characterizing groundwater flow in the twin cities metropolitan area, Minnesota a chemical and hydrostratigraphic approach. PhD Thesis, University of Minnesota, Minneapolis, MN, 186 pp

  • Tipping RG, Green JA, Alexander EC Jr (2001) karst features, plate 5, 1:100,000. In: Runkel AC (ed) Geologic atlas of Wabasha County, Minnesota. Minnesota Geol Surv County Atlas Ser C-14, part A

  • Tipping RG, Runkel AC, Alexander EC Jr, Alexander SC (2006) Evidence for hydraulic heterogeneity and anisotropy in the mostly carbonate Prairie du Chien group, southeastern Minnesota, USA. Sediment Geol 184:331–342

    Article  Google Scholar 

  • Trojan MD, Campion ME, Maloney J, Stockinger JM, Eid EP (2002) Estimating aquifer sensitivity to nitrate contamination using geochemical information. Ground Water Monit Remedia 22:100–108

    Article  Google Scholar 

  • Underwood CA, Cooke ML, Simo JA, Muldoon MA (2003) Stratigraphic controls on vertical fracture patterns in Silurian dolomite, northeastern Wisconsin. AAPG Bull 87(1):121–142

    Google Scholar 

  • Walton M, Eisenreich SJ, Holm NL, Holm, TR, Kanivetsky R, Jirsa MA, Lee, HC, Lauer JL, Miller RT, Norton JL, Runke H (1991) The University of Minnesota aquifer thermal energy storage (ATES) field test facility-system description, aquifer characterization, and results of short-term test cycles. Pacific Northwest Laboratory Report PNL-7220, UC-202, PNL, Richland, WA, 295 pp

  • Watkins J, Rasmussen N, Streitz A (2013) Nitrate-nitrogen in the springs and trout streams of Minnesota. Minnesota Groundw Assoc Newslett 32(3)

  • Welch LA, Allen DM (2014) Hydraulic conductivity characteristics in mountains and implications for conceptualizing bedrock groundwater flow. Hydrogeol J 22:1003–1026

    Article  Google Scholar 

  • Worthington SRH, Davies GJ, Alexander EC Jr (2016) Enhancement of bedrock permeability by weathering. Earth Sci Rev 160:188–202

    Article  Google Scholar 

  • Wyrick GG, Borchers JW (1981) Hydrologic effects of stress-relief fracturing in an Appalachian valley. US Geol Surv Water Suppl Pap 2177, 51 pp

Download references

Acknowledgements

We thank the Minnesota Department of Natural Resources (DNR) for access to the site of the Afton MLS well, and the Minnesota Department of Health (MDH) for assistance with video logging and well permitting. The staff at Afton State Park was particularly helpful in many respects during construction and continued monitoring of the MLS hole. We would also like to thank the scientists from the US Geological Survey in Storrs, Connecticut for their work on the borehole geophysical surveys conducted in the Afton borehole, and scientists from the US Geological Survey office in Middleton, Wisconsin for their work on the packer tests conducted in the Afton borehole. Tom Al, University of New Brunswick, provided insights that helped us interpret the water chemistry data from the Afton MLS hole. The University of Guelph’s G360 Institute for Groundwater Research provided the Westbay tools and Westbay transducers for hydraulic head and groundwater sample collection and research staff time, financially supported by the University Consortium for Field Focused Groundwater Contamination Research. Peeter Pehme of the University of Guelph provided assistance with the MLS design and borehole geophysics. Westbay Instruments Inc. (a division of Nova Metrix Ground Monitoring (Canada) Ltd.), provided support via a discount in cost of the MLS for the Afton borehole, as well as technical support, as part of their research relationship with the Guelph G360 Institute for Groundwater Research. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US government.

Funding

The research was funded primarily by the Environment and Natural Resource Trust Fund (ENRTF) as recommended by the Legislative and Citizens Commission on Minnesota Resources (LCCMR) as a subproject entitled “Investigation of the hydrologic properties of the St. Lawrence Formation”, within a broader project called “Minnesota Geological Survey County Geologic Atlases and Related Hydrogeologic Research” (Project M.L. 2010, Chap. 362, Sec. 2, Subd. 3a). The field-based investigations that included dye tracing were also funded mostly by ENRTF, as part of a project entitled “Innovative Trout Stream Springshed Mapping in Southeastern Minnesota”. Much of the borehole geophysical logging in holes of opportunity was funded by the Minnesota Department of Health. The nitrate compilation was conducted by the Minnesota Geological Survey, through a contract with the Minnesota Pollution Control Agency, with the source of funds from The Minnesota Clean Water Fund, established as a result of the Clean Water, Land and Legacy Amendment to the constitution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Runkel.

Electronic supplementary material

ESM 1

(PDF 1412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Runkel, A.C., Tipping, R.G., Meyer, J.R. et al. A multidisciplinary-based conceptual model of a fractured sedimentary bedrock aquitard: improved prediction of aquitard integrity. Hydrogeol J 26, 2133–2159 (2018). https://doi.org/10.1007/s10040-018-1794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1794-2

Keywords

Navigation