Skip to main content
Log in

A synthetic study of geophysics-based modelling of groundwater flow in catchments with a buried valley

Etude synthétique de modélisation de l’écoulement de nappe souterraine dans des bassins d’alimentation comprenant une vallée enfouie, basée sur la géophysique

Un estudio sintético de modelación basado en geofísica del flujo de agua subterránea en cuencas con un valle enterrado

基于地球物理建模对有地下河谷流域的地下水流的的综合研究

Um estudo sintético de modelação de escoamento subterrâneo baseada em geofísica em bacias hidrográficas com um vale enterrado

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater models simulating flow in buried valleys interacting with regional aquifers are often based on hydrogeological models interpreted from dense geophysical datasets and scarce borehole data. For three simple synthetic cases, it is demonstrated that alternative methods of inversion of transient electro-magnetic (TEM) data can lead to very different interpretations of the hydrogeology inside and surrounding a buried valley. The alternative interpreted hydrogeological models are used in numerical modelling of groundwater flow to a pumping well. It is demonstrated that the alternative models result in quite different groundwater-model predictions of capture zone, recharge area, and groundwater age for the pumping well. It is briefly demonstrated that model calibration against hydraulic head data is not likely to improve the predictions or to identify the structural error of the interpreted hydrogeological models. It is therefore concluded that when TEM-based resistivity models are interpreted to construct the hydrogeological framework of a groundwater model, it must be done cautiously with support from deep borehole information. Too much reliance on geophysical mapping can lead to seriously wrong hydrogeological models and correspondingly wrong groundwater-model predictions.

Résumé

Les modèles simulant l’écoulement dans des vallées enfouies interagissant avec des aquifères régionaux sont souvent basés sur des modèles hydrogéologiques construits à partir d’ensembles denses de données géophysiques et de rares données de forage. Dans trois cas synthétiques et simples, il est démontré que les méthodes alternatives d’inversion des données électromagnétiques transitoires (TEM) peuvent conduire à des interprétations très différentes de l’hydrogéologie à l’intérieur et dans l’encaissant d’une vallée enfouie. Les modèles alternatifs d’interprétation hydrogéologique sont utilisés en modélisation numérique de l’écoulement souterrain vers un puits de pompage. Il est démontré que les modèles alternatifs conduisent à des prévisions tout à fait différentes pour la zone de captage, l’aire de recharge, et l’âge de l’eau souterraine pour le puits de pompage. Il est démontré brièvement que le calage du modèle sur des données piézométriques ne va vraisemblablement pas améliorer la réponse ni identifier l’erreur de structure des modèles d’interprétation hydrogéologique. On conclu que lorsque des modèles de résistivité basés sur la méthode TEM sont utilisés pour construire le cadre hydrogéologique d’un modèle de nappe souterraine, cela doit être fait prudemment avec l’appui de l’information de forage profond. Une trop grande confiance en la cartographie géophysique peut mener à des modèles hydrogéologiques sérieusement erronés et par conséquent à des prédictions erronées de modèle de nappe.

Resumen

Los modelos de de agua subterránea que simulan el flujo en valles enterrados que interactúan con acuíferos regionales están a menudo basados en modelos hidrogeológicos interpretados a partir de densos conjuntos de datos geofísicos y escasos datos de perforaciones. Se demuestra para tres casos sintéticos simples, que los métodos alternativos de inversión de datos transitorios electromagnéticos (TEM) pueden conducir a muy diferentes interpretaciones dentro de la hidrogeología y los alrededores de un valle enterrado. Los modelos hidrogeológicos alternativos interpretados se usan en la modelación numérica del flujo subterráneo hacia pozos de bombeo. Se demuestra que los modelos alternativos dan como resultado muy diferentes predicciones de la modelación de agua subterránea de la zona de captura, el área de recarga y de la edad del agua para los pozos de bombeo. Se demuestra brevemente que no es probable la calibración del modelo en función de los datos de carga hidráulica para mejorar las predicciones o identificar el error estructural de los modelos hidrogeológicos interpretados. Además se concluye que cuando los modelos de resistividad basados en TEM son interpretados para construir el marco hidrogeológico de un modelo de agua subterránea, debe hacerse cautamente con el apoyo de la información de pozos profundos. Demasiada confianza en los mapeos geofísicos puede conducir a modelos hidrogeológicos seriamente equivocados y correspondientes a predicciones erróneas de los modelos de agua subterránea.

摘要

模拟和区域含水层之间有相互作用的地下河谷地下水流的模型通常是基于水文地质模型的,这些水文地质模型是根据大量的地球物理数据和稀少的钻孔数据解译的。三个简单的综合分析例子表明瞬变电磁(TEM)数据反演的替代方法可以得出地下河谷内部和周围水文地质条件的不同解释。这个替代解释水文地质模型常常用于抽水井的地下水流数值模拟。结果表明替代模型得出完全不同的地下水模型预测出的抽水井的捕获区,补给区和地下水年龄。它简单的说明了依据水头数据来校正模型不大可能改善预测结果或者识别出解释水文地质模型的结构性的错误。因此得出的结论是,当利用基于TEM的电阻率模型来建立地下水模型的水文地质框架时,在有深部钻孔信息的帮助下,我们必须慎重对待。过多的依赖地球物理测绘会得出有严重错误的水文地质模型以及相应错误的地下水模型预测结果。

Resumo

Os modelos de simulação de fluxo subterrâneo em vales enterrados que interagem com aquíferos regionais baseiam-se frequentemente em modelos hidrogeológicos interpretados a partir de vastos conjuntos de dados geofísicos e escassa informação de logs de sondagem. Demonstra-se, para três casos sintéticos simples, que a utilização de métodos alternativos de inversão de dados electromagnéticos transientes (TEM) pode levar a interpretações muito diferentes da hidrogeologia da zona interior e envolvente do vale enterrado. Utilizam-se os modelos conceptuais alternativos de interpretação hidrogeológica na modelação numérica do escoamento subterrâneo em direcção a um furo de extracção. Demonstra-se que as interpretações alternativas resultam em previsões do modelo muito diferentes da zona de captura, da área de recarga e da idade da água subterrânea para o furo de extracção. É demonstrado de forma sucinta que não é provável que a calibração dos modelos com dados de potencial hidráulico resulte em melhorias de previsão ou na identificação do erro estrutural dos modelos hidrogeológicos interpretados. Conclui-se por esta razão que, quando os modelos de resistividade baseados no TEM são interpretados para construir o enquadramento hidrogeológico de um modelo de fluxo subterrâneo, tal deve ser feito de forma cautelosa e com o apoio de informação de sondagens profundas. A confiança em demasia no mapeamento geofísico pode levar a modelos conceptuais hidrogeológicos seriamente errados e consequentemente a previsões erradas pelo modelo de fluxo subterrâneo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersen TR, Huuse M, Jørgensen F, Christensen S (2012) Seismic investigations of buried tunnel valleys on- and offshore Denmark, Geol Soc London Spec Pub 368. doi: 10.1144/SP368.14

  • Árnason K (1995) A consistent discretization of the electromagnetic field in conducting media and application to the TEM problem, Proceedings of the International Symposium on Three-Dimensional Electromagnetics, Schlumberger-Doll, Ridgefield, CT, pp 167–179

  • Auken E, Christiansen AV (2004) Layered and laterally constrained 2D inversion of resistivity data. Geophys 69:752–761

    Article  Google Scholar 

  • Auken E, Christiansen AV, Jacobsen BH, Foged N, Sørensen KI (2005) Piecewise 1D laterally constrained inversion of resistivity data. Geophys Prospect 53:497–506

    Article  Google Scholar 

  • Auken E, Christiansen AV, Jacobsen BH, Sørensen KI (2008) A resolution study of buried valleys using laterally constrained inversion of TEM data. J Appl Geophys 65:10–20

    Article  Google Scholar 

  • Broster BE (2004) Sedimentation in glaciated estuarine valleys and application to environmental assessment. GAC/MAC 2004, Geol Assoc Can, St. John’s, NL, May 12–14, 2004

  • Burval Working Group (2009) Buried Quaternary valleys: a geophysical approach. Z Dtsch Ges Geowiss 160:237–247

    Google Scholar 

  • Christensen NB, Sørensen KI (1998) Surface and borehole electric and electromagnetic methods for hydrogeological investigations. Eur J Environ Eng Geophys 3:75–90

    Google Scholar 

  • Clayton L, Attig JW, Mickelson DM (1999) Tunnel channels formed in Wisconsin during the last glaciation. Geol Soc Am Spec Pap 337:69–82

    Google Scholar 

  • Danielsen JE, Auken E, Jørgensen F, Søndergaard V, Sørensen KI (2003) The application of the transient electromagnetic method in hydrogeophysical surveys. J Appl Geophys 53:181–198

    Article  Google Scholar 

  • Diersch HJG (2005) FEFLOW. Finite element subsurface flow and transport simulation system. Manual. DHI/WASY, Berlin, pp 292

  • Doherty J (2011) PEST: Model-independent parameter estimation, user manual. Watermark Numerical Computing, Brisbane, Australia. Available at http://www.pesthomepage.org/Downloads.php. Accessed October 2012

  • Doherty J, Christensen S (2011) Use of paired simple and complex models to reduce predictive bias and quantify uncertainty. Water Resour Res (47). doi: 10.1029/2011WR010763

  • Ehlers J (1990) Reconstructing the dynamics of the north-west European Pleistocene ice sheets. Quat Sci Rev 9:71–83

    Article  Google Scholar 

  • Ehlers J, Linke G (1989) The origin of deep buried channels of Elsterian age in NW Germany. J Quat Sci 4:255–265

    Article  Google Scholar 

  • Fitterman DV, Stewart MT (1986) Transient electromagnetic sounding for groundwater. Geophysics 51:995–1005

    Article  Google Scholar 

  • Harrar WG, Sonnenborg TO, Henriksen HJ (2003) Capture zone, travel time, and solute-transport predictions using inverse modelling and different geological models. Hydrogeol J 11:536–548

    Article  Google Scholar 

  • Henriksen HJ, Troldborg L, Nyegaard P, Sonnenborg TO, Refsgaard JC, Madsen B (2003) Methodology for construction, calibration and validation of a national hydrological model for Denmark. J Hydrol 280:52–71

    Article  Google Scholar 

  • Huuse M, Lykke-Andersen H (2000) Overdeepened Quaternary valleys in the eastern Danish North Sea: morphology and origin. Quat Sci Rev 19:1233–1253

    Article  Google Scholar 

  • Jørgensen F, Sandersen PBE (2006) Buried and open tunnel valleys in Denmark: erosion beneath multiple ice sheets. Quat Sci Rev 25:1339–1363

    Article  Google Scholar 

  • Jørgensen F, Sandersen PBE, Auken E (2003a) Imaging buried Quaternary valleys using the transient electromagnetic method. J Appl Geophys 53:199–213

    Article  Google Scholar 

  • Jørgensen F, Lykke-Andersen H, Sandersen PBE, Auken E, Nørmark E (2003b) Geophysical investigations of buried Quaternary valleys in Denmark: an integrated application of transient electromagnetic soundings, reflection seismic surveys and exploratory drillings. J Appl Geophys 53:215–228

    Article  Google Scholar 

  • Jørgensen F, Sandersen PBE, Auken E, Lykke-Andersen H, Sørensen K (2005) Contributions to the geological mapping of Mors, Denmark: a study based on a large-scale TEM survey. Bull Geol Soc Denmark 52:53–75

    Google Scholar 

  • Kluiving SJ, Aleid Bosch JH, Ebbing JHJ, Mesdag CS, Westerhoff RS (2003) Onshore and offshore seismic and lithostratigraphic analysis of a deeply incised Quaternary buried valley-system in the Northern Netherlands. J Appl Geophys 53:249–271

    Article  Google Scholar 

  • Kristensen TB, Huuse M, Piotrowski JA, Clausen OR (2007) A morphometric analysis of tunnel valleys in the eastern North Sea based on 3D seismic data. J Quat Sci 22:801–815

    Article  Google Scholar 

  • Lonergan L, Maidment S, Collier J (2006) Pleistocene subglacial tunnel valleys in the central North Sea basin: 3-D morphology and evolution. J Quat Sci 21:891–903

    Article  Google Scholar 

  • Long D, Laban C, Streif H, Cameron TDJ, Schûttenhelm RTE (1988) The sedimentary record of climatic variation in the southern North Sea. Philos Trans R Soc Lond B 318:523–537

    Article  Google Scholar 

  • Lutz R, Kalka S, Gaedicke C, Lutz R, Winsemann J (2009) Pleistocene tunnel valleys in the German North Sea: spatial distribution and morphology. Z Dtsch Ges Geowiss 160:225–235

    Google Scholar 

  • McNeill JD (1990) Use of electromagnetic methods for groundwater studies. In: Ward SH (ed): Geotechnical and Environmental Geophysics. Investig Geophys 5:191–218

    Google Scholar 

  • Patterson CJ (1994) Tunnel-valley fans of the St. Croix moraine, east-central Minnesota, USA. In: Warren WP, Croot DG (eds) Formation and deformation of glacial deposits. Balkema, Rotterdam, The Netherlands, pp 69–87

  • Piotrowski JA (1994) Tunnel-valley formation in Northwest Germany: geology, mechanisms of formation and subglacial bed conditions for the Bornhöved tunnel valley. Sediment Geol 89:107–141

    Article  Google Scholar 

  • Sandersen PBE, Jørgensen F (2003) Buried Quaternary valleys in western Denmark: occurrence and inferred implications for groundwater resources and vulnerability. J Appl Geophys 53:229–248

    Article  Google Scholar 

  • Schwartz FW, Zhang H (2003) Fundamentals of groundwater. Wiley, Chichester, UK, 583 pp

  • Seifert D, Sonnenborg TO, Scharling P, Hinsby K (2008) Use of alternative conceptual models to assess the impact of a buried valley on groundwater vulnerability. Hydrogeol J 16:659–674

    Article  Google Scholar 

  • Sharpe DR, Hinton MJ, Russell HAJ, Desbarats AJ (2002) The need for basin analysis in regional hydrogeological studies: Oak Ridges Moraine, southern Ontario. Geosci Can 29:3–20

    Google Scholar 

  • Sørensen KI, Auken E (2004) SkyTEM? A new high-resolution helicopter transient electromagnetic system. Expl geophys 35:194–202

    Article  Google Scholar 

  • Springer AE, Bair ES (1992) Comparison of methods used to delineate capture zones of wells: 2. stratified-drift buried-valley aquifer. Ground Water 30:908–917

    Article  Google Scholar 

  • West GF, MacNae JC (1991) Physics of the electromagnetic induction exploration method. In: Nabighian MN, Corbett JD (ed) Electromagnetic methods in applied geophysics. Investig Geophys 2:5–45

    Google Scholar 

  • Woodland AW (1970) The buried tunnel-valleys of East Anglia. Proc Yorks Geol Soc 37:521–578

    Article  Google Scholar 

  • Wright HE (1973) Tunnel valleys, glacial surges and subglacial hydrology of the Superior lobe, Minnesota. In Black RF, Goldthwaite RP, Willman HB (ed) The Wisconsinan Stage. Memoir 136, Boulder, CO, Geol Soc Am 136:251–276

    Google Scholar 

Download references

Acknowledgements

The authors gratefully thank FIVA (International Research School of Water Resources, www.fiva.dk), GEUS (Geological Survey of Denmark and Greenland), and Aarhus University for funding this research. We also thank Joakim Hollenbo Westergaard and Lars Hjortshøj Jacobsen for valuable assistance. Finally, the authors would like to thank the journal reviewers whose constructive and relevant comments significantly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theis Raaschou Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, T.R., Poulsen, S.E., Christensen, S. et al. A synthetic study of geophysics-based modelling of groundwater flow in catchments with a buried valley. Hydrogeol J 21, 491–503 (2013). https://doi.org/10.1007/s10040-012-0924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-012-0924-5

Keywords

Navigation