Skip to main content

Advertisement

Log in

Spatio-temporal analysis of recent groundwater-level trends in the Red River Delta, Vietnam

Analyse spatio-temporelle des tendances piézométriques actuelles dans le delta de la rivière Rouge, Vietnam

Análisis espacio temporal de tendencias recientes en niveles de agua subterránea en el Delta del Red River, Vietnam

越南红河三角洲近期地下水水位时空趋势分析

Análise espácio-temporal da tendência recente de variação do nível da água subterrânea no Delta do Rio Vermelho, Vietname

Xu hướng biến đổi mực nước dưới đất theo không gian và thời gian ở đồng bằng châu thổ Sông Hồng, Việt nam

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A groundwater-monitoring network has been in operation in the Red River Delta, Vietnam, since 1995. Trends in groundwater level (1995–2009) in 57 wells in the Holocene unconfined aquifer and 63 wells in the Pleistocene confined aquifer were determined by applying the non-parametric Mann-Kendall trend test and Sen’s slope estimator. At each well, 17 time series (e.g. annual, seasonal, monthly), computed from the original data, were analyzed. Analysis of the annual groundwater-level means revealed that 35 % of the wells in the unconfined aquifer showed downward trends, while about 21 % showed upward trends. On the other hand, confined-aquifer groundwater levels experienced downward trends in almost all locations. Spatial distributions of trends indicated that the strongly declining trends (>0.3 m/year) were mainly found in urban areas around Hanoi where there is intensive abstraction of groundwater. Although the trend results for most of the 17 time series at a given well were quite similar, different trend patterns were detected in several. The findings reflect unsustainable groundwater development and the importance of maintaining groundwater monitoring and a database in the Delta, particularly in urban areas.

Resume

Un réseau piézométrique est opérationnel dans le delta de la Rivière Rouge au Vietnam depuis 1995. Les tendances piézométriques (1995–2009) pour 57 forages dans l’aquifère libre de l’Holocène et 63 forages dans l’aquifère captif du Pléistocène ont été déterminées en appliquant le test non paramétrique de Mann Kendall et l’estimateur de pente de Sen. Pour chaque forage, 17 chroniques piézométriques (annuelles, saisonnières, mensuelles) extraites des données d’origine ont été analysées. L’analyse des moyennes piézométriques annuelles indique que 35 % des forages dans l’aquifère libre montrent des tendances à la baisse alors qu’environ 21 % indiquent des tendances à la hausse. D’un autre côté, les niveaux piézométriques de l’aquifère captif présentent des tendances à la baisse pratiquement en tout point. Les distributions spatiales des tendances indiquent que les tendances à la baisse les plus fortes (>0.3 m/an) sont principalement localisées dans les zones urbaines autour d’Hanoi où il y a une exploitation intensive des eaux souterraines. Bien que les résultats des tendances pour la plupart des 17 chroniques pour un forage donné sont quasi similaires, différents comportements sont détectés pour les tendances pour plusieurs forages. Ces résultats reflètent l’exploitation des eaux souterraines de manière non durable et l’importance de maintenir un réseau piézométrique et une base de données pour le Delta, particulièrement dans les zones urbanisées.

Resumen

Una red de monitoreo de agua subterránea ha estado en operación en el Delta del Red River, Vietnam, desde 1995. Las tendencias en el nivel de agua subterránea (1995–2009) en 57 pozos en el acuífero Holoceno no confinado y 63 pozos en el acuífero Pleistoceno confinado se determinaron aplicando el test no paramétrico de tendencia de Mann-Kendall y el estimador de pendiente de Sen. En cada pozo, se analizaron 17 series de tiempos (por ejemplo anuales, estacionales, mensuales), computadas a partir de datos originales. El análisis de los niveles de agua subterránea medio anual reveló que el 35 % de los pozos en el acuífero no confinado mostraban tendencias decrecientes, mientras que alrededor del 21 % mostraron tendencias crecientes. Por otro lado, los niveles de agua subterránea en el acuífero confinado experimentaron tendencias decrecientes en casi todos los sitios. Las distribuciones espaciales de las tendencias indicaron que las fuertes tendencias decrecientes (>0.3 m/año) fueron principalmente encontradas en áreas urbanas alrededor de Hanoi donde hay una extracción intensivas de agua subterránea. Aunque los resultados de las tendencias para la mayoría de las 17 series temporales en un pozo dado fueron muy similares, se detectaron diferentes esquemas de tendencias en varias de ellas. Los hallazgos reflejan el desarrollo no sustentable del agua subterránea y la importancia de mantener el monitoreo de agua subterránea y una base de datos en el Delta, particularmente en áreas urbanas.

摘要

越南红河三角洲地下水监测网络自1995年起运行。通过应用非参数Mann-Kendall趋势检查及Sen’s 坡度估计对全新世潜水含水层的57口井及更新世承压含水层中63口井中的地下水位(1995–2009年)趋势进行分析。分析从原始数据计算出的每个井的17个时间序列(如年均的,季度的,月的)。地下水位年均值分析表明潜水含水层中35%的井中水位成下降趋势,21%显示上升趋势。另外,承压含水层中地下水位几乎全部表现下降趋势。趋势空间分布表明地下水位下降明显(每年大于0.3 m)的地区主要是地下水集中开采的河内城区。尽管对于一个给定井17个时间序列中的大部分的趋势分析结果非常相近,但仍有几个不同趋势类型。结果反映出地下水开发的不合理以及维持地下水监测建立三角洲尤其是城区数据库的重要性

Resumo

Uma rede de pontos de monitorização da água subterrânea tem estado em funcionamento, desde 1995, no Delta do Rio Vermelho, no Vietname. As tendências do nível da água subterrânea (1995–2009) em 57 furos no aquífero livre do Holocénico e em 63 furos no aquífero confinado do Pleistocénico foram determinados através da aplicação do teste não paramétrico de Mann-Kendall e do estimador de declive de Sen. Para cada furo foram analisadas 17 séries temporais (por exemplo anual, sazonal e mensal), calculadas a partir dos dados originais. A análise dos valores médios anuais do nível das águas subterrâneas revelaram que 35 % dos furos no aquífero livre apresentaram tendência de descida, enquanto cerca de 21 % mostraram tendência de subida. Por outro lado, os níveis da água subterrânea no aquífero confinado apresentaram, em quase todos os locais, tendência de descida. As distribuições espaciais das tendências indicaram que as tendências de forte descida (>0.3 m/ano) se localizam maioritariamente nas áreas urbanas, à volta de Hanói, onde há extração intensiva de água subterrânea. Apesar dos resultados de tendência da maioria das 17 séries temporais, para cada furo, serem muito semelhantes, foram detetados diferentes padrões de tendência em vários furos. Os resultados obtidos refletem que o uso da água subterrânea é insustentável e que é importante manter a sua monitorização e uma base de dados na área do Delta, em particular nas áreas urbanas.

TÓM TẮT

Từ năm 1995, mạng lưới giếng quan trắc nước dưới đất ở đồng bằng châu thổ sông Hồng bắt đầu được thiết lập đưa vào hoạt động. Với số liệu đo đạc trong giai đoạn 1995–2009 từ 57 giếng quan trắc của tầng chứa nước không áp Holocene và 63 giếng tầng có áp tầng Pleistocene, bài báo tiến hành xác định xu hướng và tốc độ biến đổi mực nước dưới đất được theo phương pháp không tham số Mann-Kendall. Tại mỗi giếng khoan, 17 chuỗi số liệu mưc nước dưới đất đặc trưng bao gồm số liệu trung bình năm, trung bình tháng, trung bình mùa, mực nước lớn nhất, nhỏ nhất trong năm… được thiết lập phục vụ phân tích xu thế. Kết quả phân tích từ chuỗi số liệu trung bình hàng năm tầng không áp cho thấy, 35 % số giếng quan trắc có dấu hiệu hạ thấp và 21 % có hiệu dâng cao. Tuy nhiên, ở tầng có áp thì mực nước ngầm có dấu hiệu hạ thấp ở hầu hết tất cả các điểm quan trắc. Kết quả phân tích theo không gian cho thấy vùng có dấu hiệu hạ thấp mực nước lớn (> 0.3 m/năm) chủ yếu tập trung ở khu vực đô thị, nơi mà đang khai thác nước ngầm với trữ lượng lớn như Hà Nội. Mặc dù tại mỗi vị trí quan trắc xu hướng thay đổi của 17 chuỗi dữ liệu đặc trưng về cơ bản là tương tự nhau, một số trường hợp vẫn có sự khác biệt về cả xu thế và mức độ biến đổi. Kết quả phân tích xu thế tìm đươc phản ánh tính không bền vững trong khai thác, quản lý cũng như tầm quan trọng của việc duy trì mạng lưới, cơ sở dữ liệu quan trắc nước dưới đất ở đồng bằng châu thổ sông Hồng, đặc biệt là các khu vực đô thị.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agusa T, Inoue S, Kunito T et al (2005) Widely distributed arsenic pollution in groundwater in the Red River Delta, Vietnam. Biomed Res Trace Elem 16:296–298

    Google Scholar 

  • Akther H, Ahmed MS, Rasheed KBS (2009) Spatial and temporal analysis of groundwater level fluctuation in Dhaka City, Bangladesh. Asian J Earth Sci 2:49–57

    Article  Google Scholar 

  • Almedeij J, Al-Ruwaih F (2006) Periodic behavior of groundwater level fluctuations in residential areas. J Hydrol 328:677–684

    Article  Google Scholar 

  • Barlow PM (2003) Ground water in freshwater-saltwater environments of the Atlantic coast. US Geol Surv Circ 1262

  • Berg M, Tran CH, Nguyen TC et al (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ Sci Technol 35:2621–2626

    Article  Google Scholar 

  • Berg M, Stengel C, Pham TKT et al (2007) Magnitude of arsenic pollution in the Mekong and Red River deltas: Cambodia and Vietnam. Sci Total Environ 372:413–425

    Article  Google Scholar 

  • Boyles RP, Raman S (2003) Analysis of climate trends in North Carolina (1949–1998). Environ Int 29:263–275

    Article  Google Scholar 

  • Bui H, Le TL, Schafmeister MT et al (2003) Application of isotopic hydrogeological method to investigate groundwater in Nam Dinh area. J Geol (Vietnam) B 21:88–94

    Google Scholar 

  • Bui DD, Bui NT, Hoang HA et al (2007) Research on the groundwater pollution and its effect on the community health in Hanoi, Vietnam with the supports of GIS and Mathematical model. Proceedings of the International workshop on Bio-Medicine, Plymouth, UK, 25–27 July 2007, pp 338–345

  • Bui DD, Kawamura A, Tong TN et al (2011) Identification of aquifer system in the whole Red River Delta, Vietnam. Geosci J 15:323–338

    Article  Google Scholar 

  • Bui DD, Kawamura A, Tong TN et al (2012) Aquifer system characterization for potential groundwater resources in Hanoi, Vietnam. Hydrol Process 26:932–946

    Article  Google Scholar 

  • Burn DH, Elnur MAH (2002) Detection of hydrologic trends and variability. J Hydrol 255:107–122

    Article  Google Scholar 

  • Burn DH, Hesch NM (2007) Trends in evaporation for the Canadian prairies. J Hydrol 336:61–73

    Article  Google Scholar 

  • Delgado JM, Apel H, Merz B (2010) Flood trend and variability in the Mekong River. Hydrol Earth Syst Sci 14:407–418

    Article  Google Scholar 

  • Duong HA, Berg M, Hoang MH et al (2003) Trihalomethane formation by chlorination of ammonium-and bromide-containing groundwater in water supplies of Hanoi, Vietnam. Water Res 37:3242–3252

    Article  Google Scholar 

  • Esterby SR (1998) Review of methods for the detection and estimation of trends with emphasis on water quality applications. Hydrol Process 10:127–149

    Article  Google Scholar 

  • Ferdowsian R, Pannell DJ (2009) Explaining long-term trends in groundwater hydrographs. 18th World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009

  • Ghanbari RN, Bravo HR (2011) Evaluation of correlations between precipitation, groundwater fluctuations, and lake level fluctuations using spectral methods (Wisconsin, USA). Hydrogeol J. doi:10.1007/s10040-011-0718-1

  • Gouglas EM, Vogel RM, Kroll CN (2000) Trends in floods and low flows in the United States: impact of spatial correlation. J Hydrol 240:90–105

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (2002) Statistical methods in water resources. In: Techniques of Water Resources Investigations, Book 4, Chap. 3. US Geological Survey, Reston, VA

  • Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 18:107–121

    Article  Google Scholar 

  • Hoque MA, Hoque MM, Ahmed KM (2007) Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: causes and quantification. Hydrogeol J 15:1523–1534

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA

    Google Scholar 

  • Jin YH, Kawamura A, Jinno K et al (2005a) Detection of ENSO-influence on the monthly precipitation in South Korea. Hydrol Process 19(20):4081–4092

    Article  Google Scholar 

  • Jin YH, Kawamura A, Jinno K et al (2005b) Quantitative relationship between SOI and observed precipitation in southern Korea and Japan by nonparametric approaches. J Hydrol 301:54–65

    Article  Google Scholar 

  • Kendall MG (1948) The advanced theory of statistics. Griffin, London

    Google Scholar 

  • Kendall MG (1955) Rank correlation methods. Griffin, London

    Google Scholar 

  • Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320

    Article  Google Scholar 

  • Kundzewicz ZW, Robson AJ (2004) Change detection in hydrological records: a review of the methodology. Hydrol Sci–J 49:7–19

    Article  Google Scholar 

  • Maidment DR (1993) Handbook of hydrology. McGraw-Hill, New York

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • McCobb TD, Weiskel PK (2003) Long-term hydrologic monitoring protocol for coastal ecosystems, US Geol Surv Open File Rep 02–497, 94 pp

  • Mende A, Astorga A, Neumann D (2007) Strategy for groundwater management in developing countries: a case study in northern Costa Rica. J Hydrol 334:109–124

    Article  Google Scholar 

  • Ministry of Natural Resources and Environment (MONRE), Vietnam (2009) Climate change and sea level rise scenarios in Vietnam (in Vietnamese). Available via http://moitruong.duytan.edu.vn/uploads/Files/634514402601366395.pdf. Accessed October 2010

  • Nas B, Ali B (2010) Groundwater quality mapping in urban groundwater using GIS. Environ Monit Assess 160:215–227

    Article  Google Scholar 

  • Nguyen VD, Nguyen TD (2004) Current status of groundwater pollution in Ha Noi area. J Geol Ser B, No. 24. http://www.idm.gov.vn/Nguon_luc/Xuat_ban/2004/B24/b44.htm. Accessed May 2010

  • Panda DK, Mishra A, Jena SK et al (2007) The influence of drought and anthropogenic effects on groundwater levels in Orissa, India. J Hydrol 343:140–153

    Article  Google Scholar 

  • Phien-wej N, Giao PH, Nutalaya P (2006) Land subsidence in Bangkok, Thailand. Eng Geol 82:187–201

    Article  Google Scholar 

  • Sanz D, Castaño S, Cassiraga E et al (2011) Modeling aquifer–river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). Hydrogeol J 19:475–487

    Article  Google Scholar 

  • Serrano A, Mateos VL, Garcia JA (1999) Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921–1995. Phys Chem Earth (B) 24:85–90

    Article  Google Scholar 

  • Shamsudduha M, Chandler RE, Taylor RG et al (2009) Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta. Hydrol Earth Syst Sci 13:2373–2385

    Article  Google Scholar 

  • Shamsudduha M, Taylor RG, Ahmed KM et al (2011) The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeol J 19(4):901–916

    Article  Google Scholar 

  • Tong TN (2003) National groundwater monitoring database program (in Vietnamese). Project technical report, Department of Geology and Minerals of Vietnam, Hanoi

  • Tong TN (2007) Groundwater level variation in the Red River Delta (in Vietnamese). PhD Thesis, University of Geology and Mining, Hanoi, Vietnam

  • Trinh MT, Fredlund DG (2000) Modeling subsidence in the Hanoi City area, Vietnam. Can Geotech J 37:621–637

    Article  Google Scholar 

  • UNICEF Vietnam (2001) Report on investigated results of arsenic pollution in groundwater in Hanoi city. Available via http://www.unicef.org/evaldatabase/index_14344.html. Accesssed 20 May 2009

  • Van BLP, Wada Y, Van KC et al (2010) A worldwide view of groundwater depletion. Proceedings of Fall Meeting 2010, H14F-07, American Geophysical Union, Washington, DC

  • Weber KA, Perry RG (2006) Groundwater abstraction impacts on spring flow and base flow in the Hillsborough River Basin, Florida, USA. Hydrogeol J 14(7):1252–1264

    Article  Google Scholar 

  • WMO (World Meteorological Organization) and GWP (Global Water Partnership) (2003) Integrated flood management, case study: Bangladesh. The Associated Programme on Flood Management, WMO, Geneva. Available via http://www.apfm.info/case_studies.htm. Accessed May 2010

  • Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271

    Article  Google Scholar 

  • Zektser S, Loáiciga HA, Wolf JT (2005) Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States. Environ Geol 47:396–404

    Article  Google Scholar 

Download references

Acknowledgements

This study was carried out as part of the research project, “Solutions for the water related problems in Asian Metropolitan areas” supported by the Tokyo Metropolitan Government, Japan. Field data were provided by the project “National Groundwater Monitoring Database Project”, financed by the Department of Geology and Minerals of Vietnam. We are grateful to the reviewers for their corrections and suggestions that have improved the clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Du Bui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bui, D.D., Kawamura, A., Tong, T.N. et al. Spatio-temporal analysis of recent groundwater-level trends in the Red River Delta, Vietnam. Hydrogeol J 20, 1635–1650 (2012). https://doi.org/10.1007/s10040-012-0889-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-012-0889-4

Keywords

Navigation