Skip to main content

Advertisement

Log in

Modeling aquifer–river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain)

Modélisation des interactions aquifère–rivière influencées par les prélèvements en nappe dans le Système Mancha Oriental (Espagne du Sud-Est)

Modelado de la interacción acuífero–río bajo la influencia de la extracción de agua subterráneas en el Sistema de la Mancha Oriental (SE de España)

西班牙东南部 Mancha Oriental 地下水系统抽水条件下地下水与河流的相互作用模拟

Modelação das interacções aquífero–rio sob influência da exploração da água subterrânea no Sistema da Mancha Oriental (SE de Espanha)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Mancha Oriental System (MOS, 7,260 km2) is one of the largest aquifers within Spain, and is encompassed by the Jucar River Basin. Over the past 30 years, socioeconomic development within the region has been largely due to intensive use of groundwater resources for irrigating crops (1,000 km2). Groundwater pumping (406 million m3/year) has provoked a steady drop in the groundwater level and a reduction of MOS discharge to the Jucar River. The study aims to characterize the river–aquifer relationship, to determine the influence that groundwater abstraction has on the river discharge. This research has advanced a three-dimensional large-scale numerical groundwater-flow model (MODFLOW 2000) in order to spatially and temporally evaluate, quantify and predict the river–aquifer interactions that are influenced by groundwater abstraction in MOS. It is demonstrated that although groundwater abstraction increased considerably from the early 1980s to 2000, the depletion of water stored in the aquifer was lower than might be expected. This is mainly due to aquifer recharge from the Jucar River, induced by groundwater abstraction. The area of disconnection between the river and the water table (i.e. where groundwater head is lower than the riverbed) is found to have spread 20 km downstream from its position before pumping started.

Résumé

Le Système Mancha Oriental (SMO, 7,260 km2), inclus dans le Bassin de la Rivière Jucar, est l’un des aquifères les plus étendus d’Espagne. Durant les 30 dernières années, le développement socio-économique de la région a été largement dû à l’utilisation intensive des ressources en eau souterraine pour les cultures irriguées (1,000 km²). Le pompage des eaux souterraines (406 millions m3/an) a provoqué un abaissement permanent du niveau de l’eau souterraine et une réduction de la décharge du SMO vers la Rivière Jucar. L’étude vise à caractériser la relation rivière-nappe, afin de déterminer l’influence de ce prélèvement en eau souterraine sur le drainage par la rivière. Cette recherche a conduit à un modèle numérique tridimensionnel à grande échelle de l’écoulement souterrain (MODFLOW 2000), visant à évaluer dans l’espace et dans le temps, à quantifier et à prédire les interactions rivière–aquifère, qui sont influencées par les prélèvements souterrains dans le SMO. Il est démontré que, bien que les prélèvements aient considérablement augmenté entre le début des années 1980 et 2000, la baisse de l’eau stockée dans l’aquifère a été plus faible que ce à quoi l’on pouvait s’attendre. Ceci est principalement dû à la recharge de l’aquifère par la Rivière Jucar, induite par les prélèvements d’eau souterraine. On constate que la zone où se produit la discontinuité entre la rivière et la surface piézométrique (c’est à dire où la surface de la nappe est en-dessous du lit de la rivière) s’est étendue sur 20 km à l’aval de la position qu’elle occupait avant le début des pompages.

Resumen

El Sistema de la Mancha Oriental (MOS, 7,260 km2) es uno de los acuíferos más grandes dentro de España, y está comprendido por la Cuenca del Río Jucar. Durante los 30 años pasados, el desarrollo socioeconómico dentro de la región ha sido mayormente debido al uso intensivo de los recursos de agua subterránea para la irrigación de los cultivos (1,000 km2). El bombeo de agua subterránea (406 millones de m3/año) ha provocado una caída estacionaria en los niveles de agua subterránea y una reducción de la descarga del MOS al Río Jucar. El objetivo del estudio es caracterizar la relación acuífero–río, para determinar la influencia que la extracción de agua subterránea tiene sobre la descarga del río. Esta investigación ha recurrido a un modelo numérico de flujo de agua subterránea, tridimensional, a gran escala (MODFLOW 2000) con el objeto de evaluar, cuantificar y predecir temporal y espacialmente las interacciones río–acuífero que están influenciadas por la extracción de agua subterránea en el MOS. Se demuestra que a pesar que la extracción de agua subterránea se incrementó considerablemente a partir de los principios de 1980s a 2000, el agotamiento del agua almacenada en el acuífero fue menor que lo esperable. Esto es principalmente debido a la recarga del acuífero a partir del Río Jucar, inducida por la extracción de agua subterránea. Se encontró que el área de desconexión entre el río y el nivel freático (es decir donde la carga del agua subterránea es menor que el lecho del río) se había extendido 20 km aguas abajo desde su posición previa al comienzo del bombeo.

摘要

Mancha Oriental 地下水系统 (MOS , 面积为 7,260 km2) 是西班牙最大的含水层系统之一,且其被胡卡尔河盆地包围。在过去 30 年,该地区的社会经济发展很大程度上依赖了地下水资源的高强度利用,用于灌溉农作物 (1000 km2)。地下水 采 (406 × 106 m3/a) 引起地下水位的逐步下降以及 MOS 向胡卡尔河的排泄量的减少。本研究主要通过讨论河水–地下水相互作用 系,明确地下水 采对河流排泄量的影响。为了从空间和时间尺度来评价,本研究也优化了三维、大尺度的地下水数值模型 (MODFLOW2000),并在此基础上定量化研究及预测了MOS 地下水 采影响条件下河水与地下水相互作用 系。结果表明虽然从 1980 年初期到 2000 年来地下水 采量大幅增加,含水层中水量的消耗比想象中要少。这可能主要是由于地下水开采导致的胡卡尔河向含水层的补给。河流和地下水位分离的地区 (如地下水位低于河床的地区)与地下水开采前相比向下游蔓延了20 km。

Resumo

O Sistema da Mancha Oriental (SMO, 7,260 km2) é um dos maiores aquíferos de Espanha, e está enquadrado na Bacia do Rio Jucar. Nos últimos 30 anos, o desenvolvimento socioeconómico da região tem sido em grande parte suportado num uso intensivo dos recursos hídricos subterrâneos para rega (1,000 km2). A exploração de águas subterrâneas (406 milhões de m3/ano) tem provocado uma diminuição constante do nível freático e uma redução da descarga do SMO para o Rio Jucar. Este estudo pretende caracterizar a relação rio–aquífero, de modo a determinar a influência que os volumes de água subterrânea extraídos têm no caudal do rio. Para esse efeito foi implementado um modelo numérico de fluxo de água subterrânea (MODFLOW 2000), com base numa representação tridimensional do aquífero, a fim de avaliar espacial e temporalmente, quantificar e prever, as interacções rio–aquífero, que são influenciados pela captação de águas subterrâneas no SMO. Os resultados mostram que, apesar dos volumes captados terem aumentado consideravelmente desde o início de 1980 até 2000, o esgotamento da água armazenada no aquífero foi menor do que se poderia esperar. Este facto deve-se principalmente à recarga do aquífero pelo Rio Jucar, induzida pela exploração de água subterrânea. A área de desconexão entre o rio e o nível freático (isto é, onde a cota piezométrica é menor que a cota do fundo do rio) situa-se agora 20 km a jusante da sua posição original antes do inicio da bombagem no aquífero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Calera A, Medrano J, Vela A, Castaño S (1999) GIS tools applied to the sustainable management of hydric resources: application to the aquifer system 08-29. Agric Water Manage 40:207–220

    Article  Google Scholar 

  • Calver A (2001) Riverbed permeabilities: information from pooled data. Ground Water 39:546–555

    Article  Google Scholar 

  • Castaño S, Sanz D, Gómez-Alday JJ (2009) Methodology for quantifying groundwater abstractions for agriculture via remote sensing and GIS. Water Resour Manage 24:795–814

    Article  Google Scholar 

  • DGOH (1988) Estudio de la explotación de aguas subterráneas en el acuífero de la Mancha Oriental y su influencia sobre los caudales del río Júcar [Study of the exploitation of groundwater in the Mancha Oriental Aquifer and its influence of the Jucar river flow]. DGOH, Madrid

  • DGOH (1993) Estudio de seguimiento de impacto de las extracciones de aguas subterráneas en los acuíferos de la Mancha Oriental y los caudales del río Júcar. Masrid [Monitoring study of the impact of groundwater abstractions on Mancha Oriental Aquifer and Jucar river flow]. DGOH, Madrid

  • Doherty J (2004) PEST model-independent parameter estimation users manual. Watermark, Brisbane, Australia

    Google Scholar 

  • Estrela T (2004) Jucar Pilot River Basin: provisional article 5 report pursuant to the Water Framework Directive. Ministerio de Medio Ambiente, Valencia, Spain Available via http://www.phjucar.com/docs/otros_docs/Article_5_complete.pdf. Cited 09 November 2010

  • Fernández-Sanchez JA, Lucena Bonny C, Tapia Granados F (1983) Descripción y resultados del modelo matemático del acuífero de Albacete [Description and results of mathematical modelling of the aquifers in Albacete]. III Simposio de Hidrogeología, IGME, Madrid, pp 125–131

  • Fleckenstein JH, Suzuki E, Fogg G (2001) Options for conjunctive water management to restore fall flows in the Consumnes River basin, California. In: Mariño MA, Simnovic SP (eds) Integrated water resources management. IAHS publication 272, IAHS, Wallingford, UK, pp 175–182

  • Fleckenstein JH, Anderson M, Fogg G, Mount J (2004) Managing surface water-groundwater to restore fall flows in the Cosumnes River. J Water Resour Plann Manage 130(4):301–310

    Article  Google Scholar 

  • Fleckenstein JH, Niswonger RG, Fogg G (2006) River–aquifer interactions, geologic heterogeneity, and low-flow management. Ground Water 44:837–852

    Article  Google Scholar 

  • Font E (2004) Colaboración y desarrollo de un modelo matemático distribuido de flujo subterráneo de la Unidad Hidrogeológica 08.29 Mancha Oriental en las provincias de Albacete, Cuenca y Valencia [Collaboration and development of a distributed mathematical model of groundwater flow in the hydrogeological unit 08.29, Eastern Mancha in Albacete, Cuenca and Valencia provinces]. MSc Thesis, Polytechnical University of Valencia, Spain. http://www.chj.es/medioambiente/planificacionhidrologica/Documents/Mejora%20del%20Conocimiento/MEMORIAPFCOPH.pdf. Cited 09 November 2010

  • Gorelick SM (eds) (1986) Conjunctive water use: understanding and managing surfacewater-groundwater interactions. IAHS publication no. 156, IAHS, Wallingford, UK

  • Hamm SY, Cheong JY, Kim HS (2005) Comparing inversion and trial-and-error methods to determine optimum yield at a riverbank filtration site, Korea. Salt Lake City Annual Meeting. Geol Soc Am Abst 37(7)1–66

    Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular groundwater model-User guide to modularization concepts and the groundwater flow process. US Geol Surv Open-File Rep 00–92, 121 pp

    Google Scholar 

  • IGME (1980) El sistema hidrogeológico de Albacete (Mancha Oriental): sus recursos en aguas subterráneas, utilización actual y posibilidades futuras [The Albacete hydrogeological system (Mancha Oriental): groundwater resources, actual uses and future scope]. IGME, Madrid

  • IGME (2006) Modelo Matemático de flujo de la Unidad Hidrogeológica 08.29, Mancha Oriental [Mathematical modeling of flow of the hydrogeological unit 08.29, eastern Mancha]. IGME, Madrid

  • Jagelke J, Barthel R (2005) Conceptualization and implementation of a regional groundwater model for the Neckar catchment in the framework of an integrated regional model. ADGEO 5:105–111

    Google Scholar 

  • Langhoff JH, Rasmussen KR, Christensen S (2006) Quantification and regionalization of groundwater–surface water interaction along an alluvial stream. J Hydrol 320:342–358

    Article  Google Scholar 

  • Martínez-Santos P, Llamas MR, Martínez-Alfaro P (2008) Vulnerability assessment of groundwater resources: a modelling-based approach to the Mancha Occidental aquifer, Spain. Environ Modell Softw 23:1145–1162

    Article  Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference groundwater flow model. US Geological Survey Technical Manual of Water Resources Investigation, Book 6, US Geological Survey, Reston, Va, 586 pp

  • Nemeth MS, Solo-Gabriele HM (2002) Evaluation of the use of reach transmissivity to quantify exchange between groundwater and surface water. J Hydrol 274:145–159

    Article  Google Scholar 

  • Osman YZ, Bruen MP (2002) Modelling stream-aquifer seepage in alluvial aquifer: an improved loosing-stream package for MODFLOW. J Hydrol 264:60–86

    Article  Google Scholar 

  • Pisinaras V, Petalas C, Tsihrintzis VA, Zagana E (2007) A groundwater flow model for water resources management in the Ismarida plain, north Greece. Environ Model Assess 12:75–89

    Article  Google Scholar 

  • Pulido-Velazquez AM, Sahuquillo A, Ochoa-Rivera C, Pulido-Velazqueza D (2005) Modeling of stream–aquifer interaction: the embedded multireservoir model. J Hydrol 313:166–181

    Article  Google Scholar 

  • Rodríguez LB, Cello PA, Vionnet CA (2005) Modeling stream-aquifer interactions in a shallow aquifer, Choele Choel Island, Patagonia, Argentina. Hydrogeol J 14:591–602

    Article  Google Scholar 

  • Ruiz JM (1999) Modelo distribuido para la evaluación de recursos hídricos [Distributed model for water resource assessment]. CEDEX, Madrid, 245 pp

  • Rushton K (2007) Representation in regional models of saturated river–aquifer interaction for gaining/losing rivers. J Hydrol 334:262–281

    Article  Google Scholar 

  • Sanz D (2005) Contribución a la caracterización geométrica de las unidades hidrogeológicas que integran el sistema de acuíferos de la Mancha oriental [Contribution to the geometrical characterization of the hydrogeological unit which forms the Mancha Oriental aquifers system]. PhD Thesis, Univ. Complutense de Madrid, Spain

  • Sanz D, Gómez-Alday JJ, Castaño S, Moratalla A, De las Heras J, Martínez Alfaro PM (2009) Hydrostratigraphic framework and hydrogeological behaviour of the Mancha Oriental System (SE Spain). Hydrogeol J 17:1375–1391

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    Article  Google Scholar 

  • Tóth J (1970) A conceptual model of the groundwater regime and the hydrogeological environment. J Hydrol 10:164–176

    Article  Google Scholar 

  • Trescott PC (1975) Documentation of a finite difference model for simulation of three dimensional ground-water flow. US Geol Surv Open-File Rep 75-438, 48 pp

  • UCLM (2008) Hydrological model for estimation recharge and evapotranspiration by remote sensing and GIS. UCLM, Albacete, Spain. http://www.hidromore.es/. Cited 12 November 2010

  • Vázquez-Suñe E, Abarca E, Carrera J, Capino B, Gámez D, Pool M, Simó T, Batlle F, Niñerota JM, Ibáñez X (2006) Groundwater modelling as a tool for the European Water Framework Directive (WFD) application: the Llobregat case. Phys Chem Earth 31:1015–1029

    Google Scholar 

  • Winter TC (1995) Recent advances in understanding the interaction of groundwater and surface water. In: U.S. National report to International Union of Geodesy and Geophysics 19911994. Rev Geophys 33(Suppl):985–994

  • Woessner WW (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeological thought. Ground Water 38:423–429

    Article  Google Scholar 

  • Younger PL (1995) Modelling river–aquifer interactions. In: Younger PL (ed) Proc BHS National Meeting. British Hydrological Society Occasional Paper no. 6, BHS, London

  • Zume J, Tarhule A (2008) Simulating the impacts of groundwater pumping on stream–aquifer dynamics in semiarid northwestern Oklahoma, USA. Hydrogeol J 16:797–810

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish Government under research grant CGL2008-06394-C02-02/BTE. Special thanks go to the Jucar Water Authority (CHJ) and stakeholders (JCRMO) in the Mancha Oriental System for providing the information necessary. The content of this report does not represent the view of CHJ and JCRMO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sanz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz, D., Castaño, S., Cassiraga, E. et al. Modeling aquifer–river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). Hydrogeol J 19, 475–487 (2011). https://doi.org/10.1007/s10040-010-0694-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0694-x

Keywords

Navigation