Skip to main content
Log in

Hydrogeological implications of paleo-fluvial architecture for the Paskapoo Formation, SW Alberta, Canada: a stochastic analysis

Implications hydrogéologiques de l’architecture paléo-fluviale de la formation Paskapoo, Sud-Ouest de l’Alberta, Canada : une analyse stochastique

Implicancias hidrogeológicas de la arquitectura paleofluvial de la Formación Paskapoo, Sudoeste de Alberta, Canadá: un análisis estocástico

加拿大Alberta 西南部Paskapoo地层古冲积建造的水文地质意义:随机分析

Implicações hidrogeológicas da arquitectura paleo-fluvial da Formação Paskapoo, SW de Alberta, Canadá: uma análise estocástica

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Fluvial systems tend to deposit sediment in well-defined relational geometries and in vertically and laterally repeating patterns. These sedimentary deposits are preserved to varying degrees depending on how much the fluvial system reworks the deposits. The Paskapoo bedrock aquifer system in southern Alberta, Canada, was deposited in a foreland depositional basin during uplift of the Rocky Mountains, and both the geomorphic model and field evidence indicate that the upper 100 m of the local aquifer system contains well-preserved, highly connected paleo-channels and associated overbank deposits. In order to evaluate the value of different types of data, a simplified stochastic-numerical groundwater flow model was developed to examine the sensitivity of results to model parameters. Parameters examined include: fraction of the formation made up of channel sands; meander and sinuosity factors; width-to-depth ratios of preserved channels; and crevasse splay conductivity. In all cases examined, the system exhibited anisotropic behavior with the along-channel flow direction being the most permeable and the vertical direction being least permeable. In general, the strongest control on the resulting effective anisotropic hydraulic conductivities was channel fraction, but geometric factors that control between-channel connectivity (e.g., channel sinuosity) had an appreciable effect on the across-channel flow direction effective permeability.

Résumé

Des systèmes fluviaux tendent à déposer le sédiment selon des dispositions géométriques bien définies et suivant des séquences verticales et latérales répétitives. Ces dépôts sédimentaires sont préservés à des degrés divers en fonction de leur volume de remobilisation par le système fluvial. La formation basale du système aquifère de Paskapoo, au Sud de l’Alberta, Canada, s’est déposée dans un bassin d’avant-pays pendant la surrection des Montagnes Rocheuses. Le modèle géomorphique et les données de terrain indiquent que les 100 m supérieurs du système aquifère contiennent localement des paléo-chenaux fortement connectés associés à des dépôts de débords. On a développé un modèle stochastique-numérique simplifié de flot d'eau souterraine dans le but d’évaluer les différents types de données et d’examiner la sensibilité des résultats aux valeurs des paramètres du modèle. Les paramètres examinés incluent: la fraction de la formation constituée de sables de chenal; les facteurs liés aux méandres et à la sinuosité; le rapport largeur-profondeur des chenaux préservés; et la conductivité des crevasses ouvertes. Dans tous les cas examinés le système est anisotrope, avec la plus forte perméabilité dans la direction de flot longitudinal du chenal et la plus faible dans la direction verticale. Généralement, le facteur contrôlant le plus fortement l’anisotropie résultante des conductivités hydrauliques est le chenal, mais des facteurs géométriques contrôlant la connectivité inter-chenaux (e.g. la sinuosité des chenaux) ont un effet sensible sur le flot transverse des chenaux.

Resumen

Los sistemas fluviales tienden a depositar sedimentos en geometrías relacionadas bien definidas y en esquemas vertical y lateralmente repetitivos. Estos depósitos sedimentarios son preservados en distintos grados dependiendo del grado en que sistema fluvial retrebaja los depósitos. El sistema acuífero de rocas de basamento de Paskapoo en el sur de Alberta, Canada, fue depositado en un cuenca deposicional de antepaís durante el ascenso de las Montañas Rocosas, y tanto el modelo geomorfológico como las evidencias de campo indican que los 100 m superiores del sistema acuífero local contiene paleocanales bien preservados y altamente conectados y depósitos asociados a bancos fluviales. Con el objeto de asignarle valor a los diferentes tipos de datos se desarrolla un modelo numérico estocástico simplificado de flujo de aguas subterráneas para examinar la sensibilidad de los resultados respecto a los parámetros del modelo. Los parámetros examinados incluyen: la fracción de la formación compuesta por arenas de los canales, factores de sinuosidad y meandrosidad: relaciones ancho a profundidad de los canales preservados, y conductividad extendida de las grietas. En todos los casos examinados, el sistema exhibió comportamiento anisotrópico con la dirección de flujo, siendo la dirección de flujo a lo largo del canal la más permeable y la dirección vertical la menos permeable. En general, la fracción del canal resultó el control más fuerte sobre las conductividades hidráulicas efectivas resultantes, pero los factores geométricos que controlan la conectividad entre canales (por ejemplo sinuosidad del canal) tuvieron un efecto apreciable en la permeabilidad efectiva de la dirección de flujo transversal.

摘要

冲积系统趋向于将沉积物沉积为明确的相关几何体, 并在垂向和侧向上重复。这些沉积物保存程度不同, 决定于冲积系统对该沉积改造的多少。加拿大Alberta南部的Paskapoo基岩含水层系统系落基山脉抬升时形成的前陆沉积盆地沉积, 地貌模型和野外证据都表明该含水层系统上部100m层段含有保存良好、高度连通的古河道和漫滩沉积。为评估不同类型数据的价值, 建立了一个简化的随机数值地下水流模型, 以考察结果对模型参数的敏感性。参数考察包括:组成该地层的河道砂所占的比例;决口扇渗透系数。所有考察的案例中, 该系统呈现各向异性行为, 沿河道流动方向渗透性最好, 垂向最差。总之, 控制有效各向异性渗透系数的主要因子为河道比例, 但控制河道间连通性的几何因素 (如河道弯曲度) 对于垂直河道流动方向的有效渗透率有显著影响。

Resumo

Os sistemas fluviais tendem a depositar sedimentos em relações geométricas bem definidas, repetindo padrões vertical e lateralmente. Estes depósitos sedimentares são preservados segundo graus diferentes, dependendo da forma como o sistema fluvial retrabalhou esses depósitos. O sistema aquífero sedimentar rochoso de Paskapoo, na Alberta do Sul, Canadá, foi depositado numa bacia deposicional de ante-país durante o levantamento tectónico das Montanhas Rochosas e, quer os modelos geométricos, quer as evidências de campo, indicam que os 100 m superiores do sistema aquífero local contêm paleocanais bem preservados e interligados e depósitos marginais associados. Para se conseguir avaliar o valor dos diferentes tipos de dados, criou-se um modelo numérico estocástico simplificado do escoamento de água subterrânea, de modo a examinar a sensibilidade dos resultados para modelar parâmetros. Os parâmetros examinados incluem: a fracção da formação constituída por areias de canal; factores de meandrização e de sinuosidade; a razão entre largura e profundidade dos canais preservados; e a condutividade dos depósitos de transbordo em leito de cheia (crevasse splay). Em todos os casos examinados o sistema exibiu um comportamento anisotrópico, sendo a direcção da corrente ao longo dos canais a mais permeável e a direcção vertical a menos permeável. Em geral, o mais forte controlo dos resultados efectivos das condutividades hidráulicas anisotrópicas foi a fracção canal, mas os factores geométricos que controlam a conectividade entre estes canais (ex: sinuosidade do canal) tiveram um efeito apreciável na permeabilidade efectiva dos escoamentos transversais à direcção da corrente dos canais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson MP (1989) Hydrogeologic facies models to delineate large-scale spatial trends in glacial and glaciofluvial sediments. Geol Soc Am Bull 101:501–511

    Article  Google Scholar 

  • Anderson MP (1999) Sedimentology and hydrogeology of two braided stream deposits. Sediment Geol 129:187–199

    Article  Google Scholar 

  • Barenblatt GI, Zheltov IP, Kochina IN (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (Strata). J Appl Math Meth (English translation) 24:1286–1303

    Google Scholar 

  • Barrash W, Reboulet EC (2004) Significance of porosity for stratigraphy and textural composition in subsurface, coarse fluvial deposits: Boise Hydrogeophysical Research Site. Geol Soc Am Bull 116(9/10):1059–1073

    Article  Google Scholar 

  • Bell JS, Bachu S (2003) In situ stress magnitude and orientation estimates for Cretaceous coal-bearing strata beneath the plains area of central and southern Alberta. Bull Can Petrol Geol 51(1):1–28

    Article  Google Scholar 

  • Bridge JS, Mackey SD (1993) A theoretical study of fluvial sandstone body dimensions. In: Bryant ID, Flint SS (eds) The geological modeling of hydrocarbon reservoirs and outcrop analogues. International Association of Sedimentologists, Spec Publ 15, Surrey, UK, pp 213–236

  • Brierly GJ (1996) Channel morphology and element assemblages: a constructivist approach to facies modeling. In: Carling PA, Dawson MR (eds) Advances in fluvial dynamics and stratigraphy. Wiley, Chichester, UK, pp 263–298

  • Bristow C (1996) Reconstructing fluvial channel morphology from sedimentary sequences. In: Carling PA, Dawson MR (eds) Advances in fluvial dynamics and stratigraphy. Wiley, Chichester,UK, pp 351–371

  • Burns ER, Bentley LR, Therrien R, Deutsch CV (2010) Upscaling facies models to preserve connectivity of designated facies. Hydrogeol J. doi:10.1007/s10040-010-0607-z

  • Davis JM, Lohmann RC, Phillips FM, Wilson JL, Love DW (1993) Architecture of the Sierra Ladrones Formation, central New Mexico: depositional controls on the permeability correlation structure. Geol Soc Am Bull 105(8):998–1007. doi:10.1130/0016-7606(1993)1052.3.CO;2

    Article  Google Scholar 

  • Demchuk TD, Hills LV (1991) A re-examination of the Paskapoo Formation in the central Alberta Plains: the designation of three new members. Bull Can Petrol Geol 39(3):270–282

    Google Scholar 

  • de Marsily G, Delay F, Goncalves J, Renard P, Teles V, Violette S (2005) Dealing with spatial heterogeneity. Hydrogeol J 13(1):161–183

    Article  Google Scholar 

  • Deutsch CV (2002) Geostatistical reservoir modeling. Applied Geostatistics Series. Oxford University Press, New York

    Google Scholar 

  • Deutsch CV, Tran TT (2002) FLUVSIM: a program for object-based stochastic modeling of fluvial depositional systems. Comput Geosci 28:525–535

    Article  Google Scholar 

  • Farvolden RN (1961) Groundwater resources of the Pembina area. Report 61-4, Research Council of Alberta, Edmonton, AB, 26 pp

  • Fleckenstein JH, Fogg GE (2008) Efficient upscaling of hydraulic conductivity in heterogeneous alluvial aquifers. Hydrogeol J 16:1239–1250

    Article  Google Scholar 

  • Fogg GE (1986) Groundwater flow and sand body interconnectedness in a thick multiple-aquifer system. Water Resour Res 22:679–694

    Article  Google Scholar 

  • Fogg GE, Noyes CD, Carle SF (1998) Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting. Hydrogeol J 6:131–143. doi:10.1007/S100400050139

    Article  Google Scholar 

  • Fogg GE, Carle SF, Green C (2000) Connected-network paradigm for the alluvial aquifer system. Geol Soc Am Spec Pap 348:25–42

    Google Scholar 

  • Friend PF (1983) Toward the field classification of alluvial architecture or sequence. In: Collinson JD, Lewin J (eds) Modern and fluvial systems. International Association of Sedimentologists, Spec Publ no. 6, pp 345–354

  • Grasby SE, Chen Z, Hamblin AP, Wozniak PRJ, Sweet AR (2008) Regional characterization of the Paskapoo bedrock aquifer system, southern Alberta. Can J Earth Sci 45:1501–1516

    Article  Google Scholar 

  • Gibling MR (2006) Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classification. J Sediment Res 76:731–770

    Article  Google Scholar 

  • Grieef LA, Hayashi M (2007) Establishing a rural groundwater monitoring network using existing wells: West Nose Creek pilot study, Alberta. Can Water Resour J 32:303–314

    Article  Google Scholar 

  • Hamblin AP (2004) Paskapoo-Porcupine Hills Formations in western Alberta: synthesis of regional geology and resource potential. Open file report 4679, Geological Survey of Canada, Ottawa, 31 pp

  • Koltermann CE, Gorelick SM (1996) Heterogeneity in sedimentary deposits: a review of structure-imitating, process-imitating, and descriptive approaches. Water Resour Res 32(9):2617–2658

    Article  Google Scholar 

  • Lee S-Y, Carle SF, Fogg GE (2007) Geologic heterogeneity and a comparison of two geostatistical models: sequential Gaussian and transition probability-based geostatistical simulation. Adv Water Resour 30:1914–1932

    Article  Google Scholar 

  • Lunt IA, Bridge JS, Tye RS (2004) A quantitative, three-dimensional depositional model of gravelly braided rivers. Sedimentology 51:377–414

    Article  Google Scholar 

  • Mathuis H, van der Kamp G (2006) The Q20 concept: sustainable well yield and sustainable aquifer yield, SRC Publ. no. 10417-4E06, Saskatchewan Research Council, Saskatoon, SK

  • McCloskey TF, Finnemore EJ (1996) Estimating hydraulic conductivities in an alluvial basin from sediment facies models. Ground Water 34(6):1024–1032

    Article  Google Scholar 

  • McKenna SA, Smith G (2004) Sensitivity of groundwater flow patterns to parameterization of object-based fluvial aquifer models. SEPM Spec Publ 80:29–40

    Google Scholar 

  • Meyboom P (1961) Groundwater resources of the City of Calgary and vicinity. Res Council Alberta Bull 18:1–72

    Google Scholar 

  • Meyboom P (1967) Interior plains hydrogeological region. In: Brown IC (ed) Groundwater in Canada. Economic Geology Report no. 24, Geological Survey of Canada, Ottawa, pp 131–158

  • Miall AD (2006) Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: a reality check. AAPG Bull 90(7):989–1002

    Article  Google Scholar 

  • North CP (1996) The prediction and modeling of subsurface fluvial stratigraphy. In: Carling PA, Dawson MR (eds) Advances in fluvial dynamics and stratigraphy. Wiley, Chichester, UK, pp 395–508

  • Ozoray GF, Barnes R (1978) Hydrogeology of the Calgary-Golden area, Alberta. Report 77-2, Research Council of Alberta, Edmunton, AB, 38 pp

  • Pruess K, Narasimhan TN (1985) A practical method for modeling fluid and heat flow in fractured porous media. Soc Petrol Eng J 25:14–26

    Google Scholar 

  • Ritzi RW, Jayne DF, Zahradnik AJ Jr, Field AA, Fogg GE (1994) Geostatistical modeling of heterogeneity in glaciofluvial, buried-valley aquifers. Ground Water 32(4):666–674

    Article  Google Scholar 

  • Ritzi RW, Dominic DF, Brown NR, Kausch KW, McAlenney PJ, Basial MJ (1995) Hydrofacies distribution and correlation in the Miami Valley aquifer system. Water Resour Res 31(12):3271–3281

    Article  Google Scholar 

  • Roxar (2007) Irap RMS, version 7.5.1, http://www.roxar.com/iraprms/

  • Smith DG (1986) Anastomosing river deposits, sedimentation rates and basin subsidence, Magdalena River, northwestern Columbia, South America. Sediment Geol 46:177–196

    Article  Google Scholar 

  • Smith DG, Putnam PE (1980) Anastomosed river deposits: modern and ancient examples in Alberta, Canada. Can J Earth Sci 17:1396–1406

    Google Scholar 

  • Stearns DW, Friedman M (1972) Reservoirs in fractured rock. AAPG Memoir 16:82–106

    Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am Geophys Union Trans 16:519–524

    Google Scholar 

  • Toth J (1962) A theory of groundwater motion in small drainage basins in central Alberta, Canada. J Geophys Res 67(11):4375–4387

    Article  Google Scholar 

  • Toth J (1966) Groundwater geology, movement, chemistry, and resources near Olds, Alberta. Res Council Alberta Bull 17:126

    Google Scholar 

Download references

Acknowledgements

This research was funded by an Alberta Ingenuity Fellowship and by the Alberta Ingenuity Centre for Water Research. The borehole drilling in the West Nose Creek watershed was partially funded by the Prairie Farm Rehabilitation Administration Rural Water Development Program, the Alberta Environment Water Research User Group, and the Environment Canada Science Horizons Program. Field assistance was provided by Michael Toews and Lisa Grieef. Figure digitization and preparation was by Ian Anderson. Air permeability tests were conducted by the Alberta Geological Survey. Thanks also to the Hydrogeology Journal editors, Professor Maria-Theresia Schafmeister and Sue Duncan, two anonymous reviewers, and David Sharpe of the Geological Survey of Canada for their thoughtful and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick R. Burns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, E.R., Bentley, L.R., Hayashi, M. et al. Hydrogeological implications of paleo-fluvial architecture for the Paskapoo Formation, SW Alberta, Canada: a stochastic analysis. Hydrogeol J 18, 1375–1390 (2010). https://doi.org/10.1007/s10040-010-0608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0608-y

Keywords

Navigation