Skip to main content
Log in

Temporal variation of chemical and isotopic signals in major discharges of an alpine karst aquifer in Turkey: implications with respect to response of karst aquifers to recharge

  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Proper management of karst aquifers requires a better understanding of flow and transport mechanisms in these systems. Flow in karst aquifers is inherently very complex due to the non-linear and non-stationary relationship between recharge and discharge. Information on this relationship has been acquired for a large (1,000 km2), mountainous (>3,500 m asl) karst aquifer with a deep unsaturated zone (>2,000 m) in the Aladaglar mountain range of south-central Turkey. All major discharges from the aquifer, which drain almost all the recharge, have been observed periodically for specific electrical conductivity, tritium and oxygen-18 variations during a period of 12 months. Observations reveal that the system’s response to recharge depends strongly on the competition between the infiltration and drainage velocities. These velocities, which are controlled by variables such as the time of precipitation, time of infiltration, intensity, and continuity of recharge, determine the degree of dominance of different types of flow mechanisms in the aquifer. Bypass, well-mixed and piston flow mechanisms are used to explain the response of the aquifer to the spatio-temporal variations in recharge. It appears that the aquifer switches among these flow mechanisms depending on the prevailing recharge mode and the competition between infiltration and drainage velocities.

Résumé

Une gestion adéquate des aquifères karstiques nécessite de mieux connaître les mécanismes d’écoulement et de transport dans ces systèmes. L’écoulement dans les aquifères karstiques est fondamentalement très complexe car la relation entre la recharge et l’exutoire est non linéaire et non stationnaire. Des informations sur cette relation ont été obtenues pour un aquifère karstique de montagne (>3,500 masl) étendu (1,000 km2) avec une zone non-saturée très profonde (>2,000 m), situé dans la chaîne de montagnes de l’Aladaglar du centre-sud de la Turquie. Toutes les résurgences de l’aquifère, qui drainent quasiment toute la recharge, ont été observées périodiquement pendant 12 mois pour les variations de la conductivité électrique spécifique, du Tritium et de l’Oxygène 18. Les observations montrent que la réponse du système à la recharge dépend fortement de la compétition entre les vitesses d’infiltration et de drainage. Ces vitesses sont contrôlées par des variables tels que la durée des précipitations, le temps d’infiltration, l’intensité et la continuité de la recharge et déterminent le degré de dominance des différents mécanismes d’écoulement dans l’aquifère. Les écoulements dérivés (bypass), écoulements de mélange (well-mixed) et écoulements-piston sont les mécanismes utilisés pour expliquer la réponse de l’aquifère aux variations spatio-temporelles de la recharge. L’aquifère alterne les mécanismes d’écoulement selon le mode de recharge dominant et la compétition entre les vitesses d’infiltration et de drainage.

Resumen

La gestión adecuada de los acuíferos kársticos requiere un mejor entendimiento de los mecanismos de flujo y transporte en estos sistemas. El flujo en acuíferos kársticos es intrinsecamente muy complejo debido a la relación no lineal y no estacionaria entre recarga y descarga. Se ha obtenido información sobre esta relación para un acuífero kárstico grande (1,000 km2) y montañoso (>3,500 msnm) con una zona no saturada profunda (>2,000 m) en la cordillera Aladaglar en la parte sur-central de Turquía. Todas las descargas principales del acuífero, las cuales drenan casi toda la recarga, se han observado periodicamente por variaciones específicas de conductividad eléctrica, tritio y oxígeno-18 durante un periodo de 12 meses. Las observaciones revelan que la respuesta del sistema a la recarga depende fuertemente de la competencia entre las velocidades de drenaje y de infiltración. Estas velocidades, las cuales son controladas por variables tales como el tiempo de precipitación, tiempo de infiltración, intensidad, y continuidad de recarga, determinan el grado de predominio de los diferentes tipos de mecanismos de flujo en el acuífero. Se utilizan mecanismos de flujo en pistón, bien mezclado y de circunvalación para explicar la respuesta del acuífero a las variaciones temporales y espaciales en recarga. Parece que el acuífero cambia entre estos mecanismos de flujo dependiendo del modo de recarga dominante y la competencia entre las velocidades de drenaje y de infiltración.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J Hydrol 35:93–110

    Article  Google Scholar 

  • Bardsley WE, Campbell DI (2000) Natural geological weighing lysimeters: calibration tools for satellite and ground surface gravity monitoring of subsurface water-mass change. Nat Resour Res 9:147–156

    Article  Google Scholar 

  • Bayari CS (2002) A rare landform: Yerkopru travertine bridges in the Taurids karst range, Turkey. Earth Surf Process Landf 27:577–590

    Article  Google Scholar 

  • Bayari CS, Gunay G (1995) Combined use of environmental isotopic and hydrochemical data in differentiation of groundwater flow patterns through the Aladag karstic aquifer-Turkey. Application of Tracers in Arid zone Hydrology, IAHS Publication No. 232, IAHS, Wallingford, UK, pp 99–117

  • Birk S, Liedl R, Sauter M (2004) Identification of localized recharge and conduit flow by combined analysis of hydraulic and physico-chemical spring responses (Urenbrunnen, SW-Germany). J Hydrol 286:179–193

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology, Lewis, New York, 328 pp

    Google Scholar 

  • Doctor DH, Alexander EC Jr (2005) Interpretation of water chemistry and stable isotope data from a karst aquifer according to flow regimes identified through hydrograph recession analysis. US Geol Surv Sci Invest Rep 2005–5160:82–91

  • Einsiedl F (2005) Flow system dynamics and water storage of fissured-porous karst aquifer characterized by artificial and environmental tracers. J Hydrol 312:312–321

    Article  Google Scholar 

  • Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Hyman, London, 601 pp

    Google Scholar 

  • IAEA-GNIP (2007) Global network of isotopes in precipitation, International Atomic Energy Agency, Isotope Hydrology Section. http://isohis.iaea.org. Cited 23 January 2007

  • Klimchouk A, Bayari CS, Nazik L, Tork K (2006) Glacial destruction of cave systems in high mountains, with special reference to the Aladaglar massif, Central Taurids, Turkey. Acta Carsol 35(2):111–121

    Google Scholar 

  • Labat D, Ababou R, Mangin A (2000) Rainfall-runoff relations for karstic springs. Part I: convolution and spectral analyses. J Hydrol 238:123–148

    Article  Google Scholar 

  • Labat D, Ababou R, Mangin A (2002) Rainfall-runoff relations for karstic springs: multifractal analyses. J Hydrol 256:176–195

    Article  Google Scholar 

  • Lastennet R, Mudry J (1997) Role of karstification and rainfall in the behavior of a heterogeneous karst system. Environ Geol 32:115–123

    Article  Google Scholar 

  • Long JA, Putnam LD (2004) Linear model describing three components of flow in karst aquifers using 18O data. J Hydrol 296:254–270

    Article  Google Scholar 

  • Maloszewski P, Zuber A (1996) Lumped parameter models for the interpretation of environmental tracer data. In: Manual on mathematical models in isotope hydrology, IAEA-TECDOC 910, IAEA, Vienna, pp 9–50

  • Mohrlok U, Sauter M (1997) Modeling groundwater flow in karst terrain using discrete and double-continuum approaches: importance of spatial and temporal distribution of recharge. Proc. 6th Conference on Limestone Hydrology and Fissured Media, La Chaux-de-Fonds, Switzerland, August 1997, pp 163–166

  • Monnin M, Bakalowicz M (2003) Natural tracing in karst aquifers. In: Taniguchi M, Wang K, Gamo T (eds) Land and marine hydrogeology. Elsevier, Amsterdam, pp 93–114

  • Ozyurt NN (2005) Investigation of groundwater residence time distribution in the Aladag karst aquifer (Kayseri-Adana, Turkey) (in Turkish). PhD Thesis, Institute of Graduate Studies Hacettepe University, Ankara, 274 pp

  • Ozyurt NN, Bayari CS (2005) Steady and unsteady state lumped parameter modeling of 3H and CFCs transport: hypothetical analyses and application to an Alpine karst aquifer. Hydrol Process 19:3269–3284

    Article  Google Scholar 

  • Schuster GM, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14:93–128

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305:503–505

    Article  Google Scholar 

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105

    Article  Google Scholar 

  • Worthington SRH, Davies GJ, Quinlan JF (1992) Geochemistry of springs in temperate carbonate aquifers: recharge type explains most of the variation. Proc. 5th Conference on Limestone Hydrology and Fissured Media, Neuchatel, Switzerland, 1992, pp 341–347

  • Zreda M, Ciner A, Bayari CS, Sarikaya A (2005) Remarkably extensive early Holocene glaciation in Turkey. EGU 2005, Vienna, Austria, 24–29 April 2005, Geophysical Research Abstracts vol 7, no. 06068

Download references

Acknowledgements

We gratefully acknowledge the financial and logistical support provided by Hacettepe University Research Fund and by the Cave and Karst Research Group of the General Directorate of Mineral Resources Research and Exploration (MTA). Special thanks go to Lutfi Nazik and his field team for their generous support during field studies. We also thank two anonymous reviewers for their comments, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nur Ozyurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozyurt, N.N., Bayari, C.S. Temporal variation of chemical and isotopic signals in major discharges of an alpine karst aquifer in Turkey: implications with respect to response of karst aquifers to recharge. Hydrogeol J 16, 297–309 (2008). https://doi.org/10.1007/s10040-007-0217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0217-6

Keywords

Navigation