Skip to main content
Log in

Effects of tides on a sloping shore: groundwater dynamics and propagation of the tidal wave

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The influences of tides on a coastal environment with a sloping shore are investigated by means of field observations and groundwater flow modelling. The Belgian western coastal plain consists of a wide shore, dunes and polders where diurnal tides with large amplitude occur. The effects of tides on the groundwater flow are studied using the MOCDENS3D code. First, MOCDENS3D is validated to accurately simulate the propagation, attenuation and lag of a tidal wave in an aquifer. Then groundwater flow and influences of tides are modelled for a cross-section along the French–Belgian border. This gives an exhaustive insight into the spatial and temporal varying groundwater flow and propagation of the tidal wave in the aquifer. Simulation shows that there are two interfering flow cycles. The first is a shallow tidally fluctuating flow cycle on the shore due to the interaction of the gently sloping shore and the tidally oscillating sea level. The second is a deeper flow cycle from the dunes towards the sea. Further, it is indicated that the propagation and attenuation of the tidal wave follows a complex pattern with lateral as well as vertical components. The interaction between tides and shore topography also influences the salinity distribution.

Résumé

L’influence des marées sur un environnement côtier à côte pentue, est étudiée via des observations de terrain et la modélisation de l’écoulement des eaux souterraines. Le littoral belge occidental consiste en une large côte, des dunes et des polders où l’on peut observer des marées diurnes de grandes amplitudes. Les effets des marées sur l’écoulement des eaux souterraines ont été étudiés en utilisant le code MOCDENS3D. En premier lieu, MOCDENS3D a été validé pour simuler précisément la propagation, l’atténuation et le décalage d’une vague de marée dans un aquifère. Par la suite, l’écoulement des eaux souterraines et les influences des marées sont modélisés sur un profil au travers de la frontière franco–belge. Ceci apporte une connaissance poussée et exhaustive des variations spatiales et temporelles de l’écoulement des eaux souterraines et de la propagation de la vague de marée dans l’aquifère. La simulation montre qu’il y a deux cycles interférents. Le premier est un cycle d’écoulement fluctuant, lié aux marées et situé en surface, due à l’interaction de la côte en pente douce et du niveau oscillant des marées marines. Le second est le cycle d’écoulement plus profond, des dunes vers la mer. Ultérieurement, il est montré que la propagation et l’atténuation des vagues de la marée suit un schéma compliqué, comprenant des composantes latérales et verticales. Cette interaction entre les marées et la topographie côtière influence également la distribution de la salinité.

Resumen

Se investiga las influencias de las mareas en un ambiente costero con una playa inclinada mediante observaciones de campo y modelizado de flujo de agua subterránea. La planicie costera occidental de Bélgica consiste de una playa ancha, dunas y tierras bajas ganadas al mar donde ocurren mareas diurnas de gran amplitud. Se estudian los efectos de las mareas en el flujo de agua subterránea usando el código MOCDENS3D. Primero se valida MOCDENS3D para simular con precisión la propagación, atenuación, y el retardo de una onda de marea en un acuífero. Luego se modelan el flujo de agua subterránea y las influencias de las mareas para una sección transversal a lo largo de la frontera entre Bélgica y Francia. Esto aporta un entendimiento exhaustivo acerca de la variación temporal y espacial en el flujo de agua subterránea y la propagación de la onda de marea en el acuífero. La simulación muestra que existen dos ciclos de flujo interferentes. El primero es un flujo cíclico somero que fluctúa con la marea en la playa debido a la interacción de la playa de suave pendiente con el nivel del mar que oscila con la marea. El segundo es un ciclo de flujo más profundo de las dunas hacia el mar. Además, se indica que la propagación y atenuación de la onda de marea sigue un patrón complejo con componentes laterales y verticales. La interacción entre mareas y la topografía de la playa también influye en la distribución de la salinidad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ataie-Ashiani B, Volker RE, Lockington DA (1999) Tidal effects on sea water intrusion in unconfined aquifers. J Hydrol 216:17–31

    Article  Google Scholar 

  • Bosch H (1951) Geohydrologisch onderzoek te Bergambacht [Geohydrological research in Bergambacht]. Hydrogeological colloquium, The Hague, The Netherlands

    Google Scholar 

  • Boufadel MC (2000) A mechanistic study of nonlinear solute transport in a groundwater-surface system under steady state and transient hydraulic conditions. Water Resour Res 36(9):2546–2565

    Article  Google Scholar 

  • Edelman JH (1972) Groundwater hydraulics of extensive aquifers. International Institute for Land Reclamation and Improvement, ILRI, Wageningen, The Netherlands, p 216

    Google Scholar 

  • Fetter CW (1988) Applied hydrology, 2nd edn. Merrill, Columbus, OH, p 592

    Google Scholar 

  • Forchheimer Ph (1919) Zur Theorie der Grundwasserströmung [On the theory of groundwater flow]. The Vienna Academy of Sciences, Department of Mathematics and Life Sciences, Vienna, Austria, pp 1229–1236

  • Jacob CE (1940) On the flow of water in an elastic aquifer. Trans Am Geophys Union 21:575–586

    Google Scholar 

  • Konikow LF, Bredehoeft JD (1978) Computer model of two-dimensional solute transport and dispersion in ground water. USGS Tech. of Water-Resources Investigations, Book 7, chap C2

  • Konikow LF, Goode DJ, Hornberger GZ (1996) A three-dimensional method-of-characteristics solute-transport model (MOC3D). US Geol Surv Water Resour Invest Rep 96-4267

  • Lanyon JA, Eliot IG, Clarke DG (1982) Groundwater-level variation during semidiurnal spring tide cycles on a sandy beach. Aust J Mar Freshw Res 33:377–400

    Article  Google Scholar 

  • Lebbe L (1978) Hydrogeologie van het duingebied ten westen van De Panne [Hydrogeology of the dune area west of De Panne]. PhD Thesis, Geological Institute, Ghent University, Belgium

  • Lebbe L (1981) The subterranean flow of fresh and salt water underneath the western Belgian beach. 7th Salt Water Intrusion Meeting, Uppsala, Sweden. Sver Geol Unders Rap Meddel 27:193–219

    Google Scholar 

  • Lebbe L (1983) Mathematical model of the evolution of the fresh water lens under the dunes and beach with semi-diurnal tides. 8th Salt Water Intrusion Meeting, Bari. Geol Appl Idrogeol 13(2):211–226

  • Lebbe L (1999) Parameter identification in fresh-saltwater flow based on borehole resistivities and freshwater head data. Adv Water Resour 22(8):791–806

    Article  Google Scholar 

  • Lewis JB (1987) Measurements of groundwater seepage flux onto a coral reef: spatial and temporal variations. Limnol Oceanogr 32(5):1165–1169

    Article  Google Scholar 

  • Li H, Jiao JJ (2001) Tide-induced groundwater fluctuation in a coastal leaky confined aquifer system extending under the sea. Water Resour Res 37(5):1165–1171

    Article  Google Scholar 

  • Li H, Jiao JJ (2003) Tide induced seawater–groundwater circulation in a multi-layered coastal leaky aquifer system. J Hydrol 274:211–224

    Article  Google Scholar 

  • Li L, Barry DA, Stagnitti F, Parlange JY, Jeng DS (2000) Beach water table fluctuations due to spring-neap tides: moving boundary effects. Adv Water Resour Res 23(8):817–824

    Article  Google Scholar 

  • Merrit ML (2004) Estimating hydraulic properties of the Floridan aquifer system by analysis of Earth-tide, ocean-tide and barometric effects, Collier and Henry Counties, Florida. US Geol Surv Water-Resour Invest Rep 03–4267

  • Neuman SP, Witherspoon (1969) Applicability of current theories of flow in leaky aquifers. Water Resour Res 5(4):803–816

    Google Scholar 

  • Nielsen P (1990) Tidal dynamics of the water table in beaches. Water Resour Res 26(9):2127–2134

    Article  Google Scholar 

  • Nielsen P (1999) Groundwater dynamics and salinity in coastal barriers. J Coast Res 15(3):732–740

    Google Scholar 

  • Nielsen P, Fenton JD, Aseervatham AM, Perrochet P (1997) Ground water waves in aquifers of intermediate depth. Adv Water Res 20(1):37–43

    Article  Google Scholar 

  • Oude Essink GHP (2001) Salt water intrusion in a three-dimensional groundwater system in the Netherlands: a numerical study. Transp Porous Media 43(1):137–158

    Article  Google Scholar 

  • Reay WG, Gallagher DL, Simmons GM Jr (1992) Groundwater discharge and its impact on surface water quality in a Chesapeake Bay inlet. Water Resour Bull 28(6):1121–1134

    Google Scholar 

  • Robinson MA, Gallagher DL (1999) A model of ground water discharge from an unconfined coastal aquifer. Ground Water 37(1):80–87

    Article  Google Scholar 

  • Robinson C, Li L (2004) Effect of tidal oscillations on water exchange and mixing in a coastal aquifer. Proc. of 15th International Conference on Computational Methods in Water Resources, Chapel Hill, NC, June 2004, pp 1583–1594

  • Robinson MA, Gallagher DL, Reay WG (1998) Hydrogeology and analysis of the groundwater flow system of the eastern shore, Virginia. US Geol Surv Open-File Rep 91–490

  • Steggenwentz JH (1933) De invloed van de getijbeweging van zeeën en getijrivieren op de stijghoogte van grondwater [Influence of tidal movements of seas and tidal rivers on the hydraulic head of groundwater]. PhD Thesis, Technical University Delft, The Netherlands

  • Tarhouni J (1994) Modèle inverse tridimensionel d’optimation de parameters de nappes aquifers: applications a l’echelle regionale et locale [Three-dimensional inverse model for the optimalisation of parameters: applications on a regional and local scale]. PhD Thesis, Ghent University, Belgium

  • Teo HT, Jeng DS, Seymour BR, Barry DA, Li L (2003) A new analytical solution for water table fluctuations in coastal aquifers with sloping beaches. Adv Water Resour 26(12):1239–1247

    Article  Google Scholar 

  • Todd DK (1980) Groundwater hydrology, 2nd edn. Wiley, New York, p 530

    Google Scholar 

  • Turner I (1993) Water table outcropping on macro-tidal beaches: a simulation model. Mar Geol 115:227–238

    Article  Google Scholar 

  • Turner IL, Coates BP, Acworth RI (1996) The effects of tides and waves on water-table elevations in coastal zones. Hydrogeol J 4(2):51–69

    Article  Google Scholar 

  • Urish DW, McKenna TE (2004) Tidal effects on ground water discharge through a sandy marine beach. Ground Water-Oceans Issue 42(7):971–982

    Article  Google Scholar 

  • Vandenbohede A (2003) Solute transport in heterogeneous aquifers: parameter identification and its use in groundwater pollution and salt water intrusion problems. PhD Thesis, Ghent University, Belgium

  • Vandenbohede A, Lebbe L (2005) Occurrence of salt water above fresh water in dynamic equilibrium in coastal groundwater flow systems near De Panne, Belgium. Hydrogeol J 14(4):462–472

    Article  Google Scholar 

  • Van der Gun J (1979) Schatting van de elastische bergingscoefficiënt van zandige watervoerende lagen [Estimation of the elastic storage coefficient of sandy aquifers]. Jaarverslag, The Netherlands, pp 51–61

  • Van der Kamp GSJP (1973) Periodic flow of groundwater. PhD Thesis, Free University of Amsterdam, The Netherlands

  • Van Meir N, Lebbe L (1999) Simulations of evolution of salt-water distribution in young dunes near the French-Belgian border. Proceedings of SWIM 15, Ghent, Belgium, May 1998. Natuurwet Tijdschr 79:105–113

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Peter Nielsen and Dr. Hailong Li for their constructive review of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vandenbohede.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenbohede, A., Lebbe, L. Effects of tides on a sloping shore: groundwater dynamics and propagation of the tidal wave. Hydrogeol J 15, 645–658 (2007). https://doi.org/10.1007/s10040-006-0128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0128-y

Keywords

Navigation