Skip to main content
Log in

Groundwater flow modelling within a coastal alluvial plain setting using a high-resolution hydrofacies approach; Bells Creek plain, Australia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Ground penetrating radar (GPR) has proved to be an extremely useful geophysical tool, in conjunction with direct geological data, to develop a realistic, macroscopic, subjective-based conceptual model of aquifer architecture within a shallow coastal alluvial plain. Subsequent finite-difference groundwater modelling has not only enabled determination of the dominant groundwater flow paths for the plain, but has also quantified the effects of within-facies and between-facies sedimentary heterogeneity on those flow paths. The interconnection of narrow, unconfined alluvial channels and a broad, semi-confined alluvial delta is ensuring that most fresh groundwater that enters the plain in the form of precipitation or recharge from lateral bedrock hills, is discharged into the eastern coastal wetlands via that alluvial delta aquifer.

Résumé

Le radar est un instrument géophysique très utile qui, avec les données géologiques permet les réalisations d’un modèle réaliste de la structure des aquifères alluviales côtières peu profondes. A part de la mise en évidence des directions principales d’écoulement, la modélisation par la méthode des différences finies, a permis aussi de quantifier les effets des hétérogénéités des faciès sédimentaires au long des mêmes directions d’écoulement. L’interconnectivité des canaux alluviaux libres avec une delta semi captive assure que la plupart de l’eau douce de la plaine provenant de précipitations or par la recharge du substratum qui affleure dans les collines latérales se décharge dans les marécages côtières á travers de l’aquifère deltaïque.

Resumen

El radar de penetración terrestre (RPT), ha demostrado ser una herramienta geofísica de extremada utilidad, en conjunto con datos geológicos directos, para desarrollar un modelo conceptual de bases subjetivas, macroscópico y práctico, de la arquitectura del acuífero dentro de una llanura aluvial costera somera. La etapa subsiguiente del modelamiento, por diferencias finitas del agua subterránea, no solamente ha facilitado la determinación de las redes de flujo principales del agua subterránea para la llanura, si no también cuantificó los efectos de la heterogeneidad sedimentaria en la red de flujo, denominados de “facies interna” y “entre facies”. La interconexión entre canales aluviales estrechos de tipo libre y el delta aluvial amplio de tipo semiconfinado, está asegurando que mucha del agua subterránea dulce que entra a la llanura, bien sea como precipitación, o bien como recarga lateral desde las colinas rocosas de los alrededores, sea descargada a los humedales costeros orientales por medio del acuífero deltaico aluvial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a Fig. 2b
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson MP (1989) Hydrogeological facies models to delineate large-scale spatial trends in glacial and glacio-fluvial sediments. GSA Bull 101:501–511

    Article  Google Scholar 

  • Anderson MP, Aiken JS, Webb EK, Mickelson DM (1999) Sedimentology and hydrogeology of two braided stream deposits. Sed Geol 129:187–199

    Article  Google Scholar 

  • Anderson MP, Woessner WW (1992) Applied groundwater modeling: simulation of flow and advective transport. Academic Press, Toronto, Ontario, Canada

    Google Scholar 

  • Asprion U, Aigner T (1997) Aquifer architecture analysis using ground-penetrating radar: Triassic and Quaternary examples (S. Germany). Envir Geol 31:66–75

    Article  Google Scholar 

  • Asprion U, Aigner T (1999) Towards realistic aquifer models: three-dimensional georadar surveys of Quaternary gravel deltas (Singen Basin, SW Germany). Sed Geol 129:281–297

    Article  Google Scholar 

  • ASTM D 5611-94 (1999) Standard guide for conducting a sensitivity analysis for a ground-water flow model application, American Society for Testing and Materials, 5 pp

  • Beres M, Huggenberger P, Green AG, Horstmeyer H (1999) Using two- and three-dimensional georadar methods to characterise glaciofluvial architecture. Sed Geol 129:1–24

    Article  Google Scholar 

  • Bersezio R, Bini A, Guidici M (1999) Effects of sedimentary heterogeneity on groundwater flow in a Quaternary pro-glacial delta environment: joining facies analysis and numerical modelling. Sed Geol 129:327–344

    Article  Google Scholar 

  • Best JL, Ashworth PJ, Bristow CM, Roden J (2003) Three-dimensional sedimentary architecture of a large, mid-channel sand braid bar, Jamuna River, Bangladesh. J Sed Res 73:516–530

    Google Scholar 

  • Bevan MJ, Endres AL, Rudolph DL, Parkin G (2003) The non-invasive characterization of pumping-induced dewatering using ground penetrating radar. J Hydrol 281:55–69

    Article  Google Scholar 

  • Bridge JS, Alexander J, Collier REL, Gawthorpe RL, Jarvis J (1995) Ground-penetrating radar and coring used to study the large-scale structure of point-bar deposits in three dimensions. Sedimentology 42:839–852

    Article  Google Scholar 

  • Bridge JS, Collier REL, Alexander J (1998) Large-scale structure of Calamus River deposits (Nebranska, USA) revealed using ground-penetrating radar. Sedimentology 45:977–986

    Article  Google Scholar 

  • Bristow CS, Chroston PN, Bailey SD (2000) The structure and development of foredunes on a locally prograding coast: insights from ground-penetrating radar surveys, Norfolk, UK. Sedimentology 47:923–944

    Article  Google Scholar 

  • Carle SF, Labolle EM, Weissmann GS, Van Brocklin D, Fogg GE (1998) Conditional simulation of hydrofacies architecture: a transition probability/Markov approach. In: Fraser GS, Davis JM (eds) Hydrogeologic models of sedimentary aquifers, vol 1: concepts in hydrogeology and environmental geology no 1. SEPM, Oklahoma, USA, pp 147–170

    Google Scholar 

  • Chiang WH, Kinzelbach W (1998) Processing Modflow Version 5.0 Operation Manual Hamburg, Heidelberg, Germany, Scientific Software Group

  • Cooper HH, Bredehoeft JD, Papadopulos IS (1967) Response of a finite-diameter well to an instantaneous charge of water. Water Resour Res 3:263–269

    Google Scholar 

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Am Geophys Union Trans 27:526–534

    Google Scholar 

  • Cranfield LC (1984) Stratigraphic drilling data—Ipswich, Brisbane and Gympie 1:250, 000 Sheet areas—1972 to 1976. Geological Survey of Queensland, Brisbane

    Google Scholar 

  • Doherty J (1994) PEST model-independent parameter estimation. Watermark Computing, Corinda, Australia, 122 pp

    Google Scholar 

  • Dominic DF, Ritzi RW, Reboulet EC, Zimmer AC (1998) Geostatistical analysis of facies distributions: elements of a quantitative facies model. In: Fraser GS, Davis JM (eds) Hydrogeologic models of sedimentary aquifers, vol 1: concepts in hydrogeology and environmental geology no 1. SEPM, Oklahoma, USA, pp 137–146

    Google Scholar 

  • Ezzy TR, Cox ME (2003) Implications of land-use changes on groundwater within shallow coastal plain aquifers, Bells Creek catchment, southeast Queensland, Australia. In: Lopez-Geta JA, de la Orden JA, de Dios Gomez J, Ramos G, Mejias M, Rodriguez L (eds) Coastal aquifers intrusion technology: Mediterranean countries, vol 1: hidrogeologia Y aguas subterraneas no 8. Instituto Geologico Y Minero de Espana, Alicante, Spain, pp 439–444

    Google Scholar 

  • Ezzy TR, Cox ME, Brooke B (2002) The influence of stratigraphy on the occurrence and composition of groundwater within a coastal valley-fill: Meldale, southeastern Queensland. In: “Balancing the Groundwater Budget” CD of Proceedings, 7th IAH National Groundwater Conference, Darwin, 12–17 May, 2002, 6 pp

  • Fogg GE, Noyes CD, Carle SF (1998) Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting. Hydrogeol J 6:131–143

    Article  Google Scholar 

  • Galloway WE, Sharp JM (1998a) Characterising aquifer heterogeneity within terrigenous clastic depositional systems. In: Fraser GS, Davis JM (eds) Hydrogeologic models of sedimentary aquifers, vol 1: concepts in hydrogeology and environmental geology no 1. SEPM, Oklahoma, USA, pp 85–90

    Google Scholar 

  • Galloway WE, Sharp JM (1998b) Hydrogeology and characterisation of fluvial aquifer systems. In: Fraser GS, Davis JM (eds) Hydrogeologic models of sedimentary aquifers, vol 1: concepts in hydrogeology and environmental geology no 1. SEPM, Oklahoma, USA, pp 91–106

    Google Scholar 

  • Grant JA, Brooks MJ, Taylor BE (1998) New constraints on the evolution of the Carolina Bays from ground-penetrating radar. Geomorphology 22:325–345

    Article  Google Scholar 

  • Haitjema H, Kelson V, de Lange W (2001) Selecting MODFLOW cell sizes for accurate flow fields. Ground Water 39:931–938

    Article  PubMed  Google Scholar 

  • Harari Z (1996) Ground-penetrating radar (GPR) for imaging stratigraphic features and groundwater in sand dunes. J Appl Geophys 36:43–52

    Article  Google Scholar 

  • Heinz J, Kleineidam S, Teutsch G, Aigner T (2003) Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW Germany): application to hydrogeology. Sed Geol 158:1–23

    Article  Google Scholar 

  • Huggenberger P, Aigner T (1999) Introduction to the special issue on aquifer sedimentology: problems, perspectives and modern approaches. Sed Geol 129:179–186

    Article  Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations, US Army Corps of Engineers Waterways Experiment Station. Bulletin no 36, 50 p

  • Kim K, Anderson MP, Bowser CJ (1999) Model calibration with multiple targets: a case study. Ground Water 37:345–351

    Article  Google Scholar 

  • Klingbeil R, Kleineidam S, Asprion U, Aigner T, Teutsch G (1999) Relating lithofacies to hydrofacies: outcrop-based hydrogeological characterisation of Quaternary gravel deposits. Sed Geol 129:299–310

    Article  Google Scholar 

  • Koltermann CE, Gorelick SM (1996) Heterogeneity in sedimentary deposits: a review of structure-imitating, process-imitating, and descriptive approaches. Water Resour Res 32:2617–2658

    Article  Google Scholar 

  • Leclerc RF, Hickin EJ (1997) The internal structure of scrolled floodplain deposits based on ground-penetrating radar, North Thompson River, British Columbia. Geomorphology 21:17–38

    Article  Google Scholar 

  • Martin JE, O’Flynn ML, Willmott WF (1978) Industrial rock and mineral resources: Nambour and Caloundra 1:100,000 sheet areas, Department of Mines, Geological Society of Queensland, Record 1978/16

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite difference groundwater flow model, USGS techniques of water-resources investigations, Book 6, Chap. A1: 586 pp

  • McKellar JL (1993) Stratigraphic relationships in the Nambour Basin, southeastern Queensland. In: Beetson JW (ed) Queensland geology. Department of Minerals and Energy, Brisbane, pp 1–17

    Google Scholar 

  • Middlemis H (2001) Murray-Darling Basin Commission: Groundwater flow modelling guideline. Aquaterra Consultancy Pty Ltd, South Perth, Western Australia, 133 pp

    Google Scholar 

  • Miller RB, Castle JW, Temples TJ (2000) Deterministic and stochastic modeling of aquifer stratigraphy, south Carolina. Ground Water 38:284–295

    Article  Google Scholar 

  • Neal A, Richards J, Pye K (2002) Structure and development of shelf cheniers in Essex, southeast England, investigated using high-frequency ground-penetrating radar. Marine Geol 185:435–469

    Article  Google Scholar 

  • Neal A, Roberts CL (2000) Applications of ground-penetrating radar (GPR) to sedimentological, geomorphological and geoarchaeological studies in coastal environments. In: Pye K, Allen JRL (eds) Coastal and estuarine environments: sedimentology, geomorphology and geoarchaeology, vol 175. Geological Society, London, Special Publications, pp 139–171

    Google Scholar 

  • Neuman SP (1972) Theory of flow in unconfined aquifers considering delayed response of the watertable. Water Resour Res 8:1031–1045

    Article  Google Scholar 

  • Nobes DC, Ferguson RJ, Brierley GJ (2001) Ground-penetrating radar and sedimentological analysis of Holocene floodplains: insight from the Tuross valley, New South Wales. Aust J Earth Sci 48:347–355

    Article  Google Scholar 

  • O’Rourke A (2002) The sedimentary framework and aquifer characteristics of the Bells Creek plain, Australia, determined using Ground Penetrating Radar. Unpublished BSc (hons), Queensland University of Technology

  • Poeter E, Gaylord DR (1990) Influence of aquifer heterogeneity on contaminant transport at the Hanford Site. Ground Water 32(3):439–447

    Article  Google Scholar 

  • Pollock DW (1989) Documentation of computer programs to compute and display pathlines using results from the U.S. Geological Survey modular three-dimensional finite-difference ground-water model. USGS Open-File Report 89-381: 188 pp

  • Stanford SD, Ashley GM (1998) Using three-dimensional geologic models to map glacial aquifer systems: an example from New Jersey. In: Fraser GS, Davis JM (eds) Hydrogeologic models of sedimentary aquifers, vol 1: concepts in hydrogeology and environmental geology no 1. SEPM, Oklahoma, USA, pp 69–84

    Google Scholar 

  • Sudicky EA (1986) A natural gradient experiment on solute transport in a sand aquifer. Spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res 22:2069–2082

    Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 16:519–524

    Google Scholar 

  • van Overmeeren RA (1998) Radar facies of unconsolidated sediments in The Netherlands: A radar stratigraphy interpretation method for hydrogeology. J Appl Geophys 40:1–18

    Article  Google Scholar 

  • Vandenberghe J, van Overmeeren RA (1999) Ground penetrating radar images of selected fluvial deposits in the Netherlands. Sed Geol 128:245–270

    Article  Google Scholar 

  • Webb EK, Davis JM (1998) Simulation of the spatial heterogeneity of geologic properties: an overview. In: Fraser GS, Davis JM (eds) Hydrogeologic models of sedimentary aquifers, vol 1: concepts in hydrogeology and environmental geology no 1. SEPM, Oklahoma, USA, pp 1–24

    Google Scholar 

  • Weissmann GS, Labolle EM, Fogg GE (2000) Modeling environmental tracer-based groundwater ages in heterogeneous aquifers. In: Bentley LR, Sykes JF, Brebbia CA, Gray WG, Pinder GF (eds) Computational methods in water resources. A.A. Balkema, Calgary, Alberta, Canada, 25–29 June, pp 805–811

    Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geog 2:184–194

    Google Scholar 

  • Willmott WF, Stevens NC (1988) Rocks and landscapes of the Sunshine Coast Brisbane, Geological Society of Australia

  • Woodbury AD, Sudicky EA (1991) The Geostatistical characteristics of the Borden aquifer. Water Resour Res 27:533–546

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to CSIRO Mineral Exploration and Mining Division for use of their RAMAC GPR unit, Dr. David Noon (University of Queenland) for GPR technical advice, and Lensworth (particularly Dr. Ron Black, and Peter Gust) for research funding and technical support. The authors are indebted to Dr. Daniel Lack for invaluable advice regarding sensitivity analysis and assistance in compiling the statistical code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Ezzy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezzy, T.R., Cox, M.E., O’Rourke, A.J. et al. Groundwater flow modelling within a coastal alluvial plain setting using a high-resolution hydrofacies approach; Bells Creek plain, Australia. Hydrogeol J 14, 675–688 (2006). https://doi.org/10.1007/s10040-005-0470-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-005-0470-5

Keywords

Navigation