Skip to main content
Log in

Applicability of the most frequent value method in groundwater modeling

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Most Frequent Value Method (MFV) is applied to groundwater modeling as a robust and effective geostatistical method. The Most Frequent Value method is theoretically derived from the minimization of the information loss called the I-divergence. The MFV algorithm is then coupled with global optimization (Very Fast Simulated Annealing) to provide a powerful method for solving the inverse problems in groundwater modeling. The advantages and applicability of this new approach are illustrated by means of theoretical investigations and case studies. It is demonstrated that the MFV method has certain advantages over the conventional statistical methods derived from the maximum likelihood principle.

Résumé

On a appliqué la méthode de la valeur la plus fréquente (VPF) comme une méthode géostatistique robuste et efficace pour modéliser les eaux souterraines. Du point de vue théorique, la méthode de VPF part de la minimisation de l’information perdue, dénommée I-divergence. On couple après l’algorithme de la méthode de VPF avec la méthode d’optimisation globale affin de réaliser une méthode performante pour résoudre le problème inverse dans le domaine des eaux souterraine. Les avantages et les possibilités d’application de cette nouvelle approche sont illustrées par des investigations théoriques, ainsi que par des études de cas. On montre que la méthode de VPF présente certains avantages par rapport des méthodes statistiques conventionnelles basées sur le principe de la probabilité maximale.

Resumen

El Método del Valor Mas Frecuente (VMF), es aplicado al modelamiento de agua subterránea, como un método geoestadístico simple y efectivo. Este método es derivado teóricamente de la acción de reducir al mínimo la pérdida de información, llamada así divergencia – I. El algoritmo del VMF es entonces acoplado con optimización global(Very Fast Simulated Annealing), para obtener así un método efectivo que resuelva los problemas inversos en el modelamiento de aguas subterráneas. Las ventajas y aplicabilidad de esta aproximación nueva son ilustradas a través de investigaciones teóricas y estudios de caso. Se demuestra que el método VMF tiene ciertas ventajas sobre los métodos estadísticos convencionales derivados del principio de la probabilidad máxima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson MP, Woessner WW (1992) Applied ground-water modeling. Academic, San Diego, CA, 381 pp

    Google Scholar 

  • Carrera J, Neuman SP (1986a) Estimation of aquifer parameters under transient and steady state conditions. 1. Maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210

    Google Scholar 

  • Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady state conditions. 2. Uniqueness, stability and pollution algorithms. Water Resour Res 22(2):211–227

    Google Scholar 

  • Carrera J, Neuman SP (1986c) Estimation of aquifer parameters under transient and steady state conditions. 3. Application to synthetic and field data. Water Resour Res 22(2):228–242

    Google Scholar 

  • Chiang WH, Kinzelbach W (2001) 3D-Groundwater modeling with PMWIN. A simulation system for modeling groundwater flow and pollution. Springer, Berlin Heidelberg New York, 346 pp

    Google Scholar 

  • de Marsily Gh, Delhomme JP, Coundrain-Ribstein A, Lavenue AM (2000) Four decades of inverse problems in hydrogeology. Paru dans Geophysical Society of America, Special paper 348:1–28

    Google Scholar 

  • Dobróka M, Gyulai Á, Ormos T, Csokás J, Dresen L (1991) Joint inversion of seismic and geoelectric data recorded in an underground coal mine. Geophys Prospect 39:643–665

    Google Scholar 

  • Doherty J (2000) PEST, model-independent parameter estimation, 4th edn. program documentation. Watermark Numerical Computing, p 249

  • Dutter R (1987) Mathematische Methoden in der Montangeologie. Vor-lesungsnotizen, Manuscript, Leoben

  • EMRL, Environmental Modeling Research Laboratory of Brigham Young University (2002) Groundwater modeling system (GMS 4.0), Tutorial manual

  • Ferenczy L, Kormos L, Szucs P (1990) A new statistical method in well log interpretation, paper O. In: 13th European formation evaluation symposium transactions: Soc. Prof. Well Log Analysts, Budapest Chapter, 17 pp

  • Hajagos B, Steiner F (1991) Different measures of the uncertainty. Acta Geod Geophys Montan Hung 26:183–189

    Google Scholar 

  • Hajagos B, Steiner F (1995) Symmetrical stable probability distributions nearest lying to the types of the supermodel f a (x). Acta Geod Geophys Hung 30(2–4):463–470

    Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular ground-water model—user guide to modularization concepts and the ground water flow process. U.S. Geological Survey, Open-file report 00–92

  • Hill MC (1992) A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional ground water flow model using nonlinear regression. U.S. Geological Survey, Open-file report 91–484

  • Hill MC (1998) Methods and guidelines for effective model calibration. U.S. Geological Survey, Water-resources investigations report 98-4005

  • Hill MC, Banta ER, Harbaugh AW, Anderman ER (2000) MODFLOW-2000, The U.S. Geological Survey modular ground-water model—user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs. U.S. Geological Survey, Open-file report 00-184

  • Huber PJ (1981) Robust statistics. Wiley, New York, 308 pp

    Google Scholar 

  • Ingber L (1989) Very fast simulated reannealing. Math Comput Modeling 12(8):967–993

    Article  Google Scholar 

  • Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, Oxford, pp 1–561

    Google Scholar 

  • Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    MathSciNet  Google Scholar 

  • Kitandis PK (1997) Introduction to geostatistics: applications to hydrogeology. Cambridge University Press, Cambridge, 249 pp

    Google Scholar 

  • Kruseman GP, de Ridder NA (1990) Analysis and interpretation of pumping test data, Publication 47. International Intsitute for Land Reclamation and Improvement, Wageningen, The Netherlands, pp 1–375

    Google Scholar 

  • Lebbe LC (1999) Hydraulic parameter identification. Generalized interpretation method for single and multiple pumping tests. Springer, Berlin Heidelberg New York, 359 pp

    Google Scholar 

  • Lee T-C (1999) Applied mathematics in hydrogeology. CRC Press, Boca Raton, FL (ISBN 1-56670-375-1)

    Google Scholar 

  • Lines TR, Treitel S (1984) Tutorial: a review of least squares inversion and its application to geophysical problems. Geophys Prospect 32:159–186

    Google Scholar 

  • Marquardt DW (1970) Generalized inverses, Ridge regression, biased linear estimation, and nonlinear estimation. Techometrics 12:591–612

    Google Scholar 

  • Menke W (1984) Geophysical data analysis: discrete inverse theory. Academic, San Diego, CA

    Google Scholar 

  • Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    CAS  Google Scholar 

  • Poeter EP, Hill MC (1997) Inverse models: a necessary next step in groundwater modeling. Ground Water 35(2):250–260

    Google Scholar 

  • Poeter EP, Hill MC (1998) Documentation of UCODE. A computer code for universal inverse modeling. U.S. Geological Survey, Water-resources investigations report 98–4080

  • Pollock DW (1994) User’s guide for MODPATH/MODPATH-PLOT, version 3: a particle tracking post-processing package for MODFLOW, the U.S. Geological Survey finite difference ground-water flow model: U.S. Geological Survey open-file report 94-464, 6 ch

  • Sen M, Stoffa PL (1995) Global optimization methods in geophysical inversion. Elsevier, Amsterdam, The Netherlands. Adv Explor Geophys 4

    Google Scholar 

  • Steiner F (1965) Interpretation of Bouguer-maps (in Hungarian). Dissertation, Manuscript, Miskolc, pp 80–94

  • Steiner F (1972) Simultane interpretation geophysikalischer messdatensysteme. Rev Pure Appl Geophys 96:15–27

    Article  Google Scholar 

  • Steiner F (1988) The most frequent value procedures. Geophys Trans 34(2–3):226

    Google Scholar 

  • Steiner F (1990) The bases of geostatistics (in Hungarian). Tankonyvkiado, Budapest, Hungary, 363 pp

    Google Scholar 

  • Steiner F (ed) (1991) The most frequent value. Introduction to a modern conception statistics. Akademia Kiado, Budapest, Hungary, 314 pp

    Google Scholar 

  • Steiner F (ed) (1997) Optimum methods in statistics. Akademia Kiado, Budapest, Hungary

    Google Scholar 

  • Steiner F, Hajagos B (1994) Practical definition of robustness. Geophys Trans 38:193–210

    Google Scholar 

  • Steiner F, Hajagos B (1995) Determination of the parameter errors (demonstrated on a gravimetric example) if the geophysical inversion is carried out as the global minimization of arbitrary norms (demonstrated by the Pc norm). Magyar Geofizika 36:261–276

    Google Scholar 

  • Sun N-Z (1994) Inverse problems in groundwater modeling. Kluwer, Dordrecht

    Google Scholar 

  • Szucs P (1994) Comment on an old dogma: ‘the data are normally distributed’. Geophys Trans 38:231–238

    Google Scholar 

  • Szucs P (2002) Inversion of pumping test data for improved interpretation. In: microCAD 2002, International scientific conference, University of Miskolc, A: Geoinformatics, 7–8 March 2002, pp 107–112

  • Szucs P, Civan F (1996) Multi-layer well log interpretation using the simulated annealing method. J Pet Sci Eng 14:209–220

    Article  Google Scholar 

  • Szucs P, Ritter Gy (2002) Improved interpretation of pumping test results using simulated annealing optimization. In: ModelCARE 2002, Proceedings of the 4th international conference on calibration and reliability in groundwater modeling, Prague, Czech Republic, 17–20 June 2002. Acta Universitas Carolinae – Geologica 2002, 46(2/3):238–241

  • Tóth J (1999) Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14

    Google Scholar 

  • Valstar JR (2001) Inverse modeling of groundwater flow and transport. PhD thesis, Delft University of Technology

  • Valstar JR, McLaughlin DB, te Stroet CBM, van Geer FC (2004) The representer-based inverse method for groundwater flow and transport applications. Water Resour Res 40:W05116. DOI 10.1029/2003WR002922

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Fulbright Scholarship Program, the Bolyai Janos Research Scholarship of the Hungarian Academy of Sciences, and the Mewbourne School of Petroleum and Geological Engineering at the University of Oklahoma for support of this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Szucs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szucs, P., Civan, F. & Virag, M. Applicability of the most frequent value method in groundwater modeling. Hydrogeol J 14, 31–43 (2006). https://doi.org/10.1007/s10040-004-0426-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0426-1

Keywords

Navigation