Skip to main content
Log in

Vibration can enhance stick-slip behavior for granular friction

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We experimentally study the frictional behavior of a two-dimensional slider pulled slowly over a granular substrate comprised of photoelastic disks. The slider is vibrated at frequencies ranging from 0 to 30 Hz in a direction parallel to sliding. The applied vibrations have constant peak acceleration, which results in constant average friction levels. Surprisingly, we find that stick-slip behavior, where stress slowly builds up and is released in intermittent slips, is enhanced as the frequency of vibration is increased. Our results suggest that increasing the frequency of vibration may help to combine many smaller rearrangements into fewer, but larger, avalanche-like slips, a mechanism unique to granular systems. We also examine the manner in which the self-affine character of the force curves evolves with frequency, and we find additional support for this interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scott, D.R., Marone, C.J., Sammis, C.G.: The apparent friction of granular fault gouge in sheared layers. J. Geophys. Res. Solid Earth 99(B4), 7231 (1994)

    Article  Google Scholar 

  2. Daniels, K.E., Hayman, N.W.: Force chains in seismogenic faults visualized with photoelastic granular shear experiments. J. Geophys. Res. (2008). https://doi.org/10.1029/2008JB005781

    Article  Google Scholar 

  3. Hayman, N.W., Ducloué, L., Foco, K.L., Daniels, K.E.: Granular controls on periodicity of stick-slip events: kinematics and force-chains in an experimental fault. Pure Appl. Geophys. 168(12), 2239 (2011)

    Article  ADS  Google Scholar 

  4. Darve, F., Laouafa, F.: Instabilities in granular materials and application to landslides. Mech. Cohes. friction. Mater. Int. J. Exp. Modell. Comput. Mater. Struct. 5(8), 627 (2000)

    Article  Google Scholar 

  5. Clark, A.H., Shattuck, M.D., Ouellette, N.T., O’Hern, C.S.: Role of grain dynamics in determining the onset of sediment transport. Phys. Rev. Fluids 2(3), 034305 (2017)

    Article  ADS  Google Scholar 

  6. Pähtz, T., Durán, O.: Universal friction law at granular solid-gas transition explains scaling of sediment transport load with excess fluid shear stress. Phys. Rev. Fluids 3, 104302 (2018)

    Article  ADS  Google Scholar 

  7. Peleg, M.: Flowability of food powders and methods for its evaluation—a review. J. Food Process Eng. 1(4), 303 (1977)

    Article  Google Scholar 

  8. Teunou, E., Fitzpatrick, J.J.: Effect of relative humidity and temperature on food powder flowability. J. Food Eng. 42(2), 109 (1999)

    Article  Google Scholar 

  9. Ketterhagen, W.R., am Ende, M.T., Hancock, B.C.: Process modeling in the pharmaceutical industry using the discrete element method. J. Pharm. Sci. 98(2), 442 (2009)

    Article  Google Scholar 

  10. Tardos, G.I., Khan, M.I., Mort, P.R.: Critical parameters and limiting conditions in binder granulation of fine powders. Powder Technol. 94(3), 245 (1997)

    Article  Google Scholar 

  11. Elst, N.J., Brodsky, E.E., Le Bas, P.-Y., Johnson, P.A.: Auto-acoustic compaction in steady shear flows: experimental evidence for suppression of shear dilatancy by internal acoustic vibration. J. Geophys. Res. (2012). https://doi.org/10.1029/2011JB008897

    Article  Google Scholar 

  12. Taylor, S., Brodsky, E.E.: Granular temperature measured experimentally in a shear flow by acoustic energy. Phys. Rev. E 96, 032913 (2017)

    Article  ADS  Google Scholar 

  13. Johnson, P.A., Jia, X.: Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 437(7060), 871 (2005)

    Article  ADS  Google Scholar 

  14. Brodsky, E.E., van der Elst, N.J.: The uses of dynamic earthquake triggering. Annu. Rev. Earth Planet. Sci. 42, 317 (2014)

    Article  ADS  Google Scholar 

  15. Dahmen, K.A., Ben-Zion, Y., Uhl, J.T.: A simple analytic theory for the statistics of avalanches in sheared granular materials. Nat. Phys. 7(7), 554 (2011)

    Article  Google Scholar 

  16. da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021309 (2005)

    Article  ADS  Google Scholar 

  17. Kamrin, K., Koval, G.: Effect of particle surface friction on nonlocal constitutive behavior of flowing granular media. Comp. Part. Mech. 1(2), 169 (2014)

    Article  Google Scholar 

  18. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079 (2005)

    Article  ADS  Google Scholar 

  19. Peyneau, P.E., Roux, J.N.: Solidlike behavior and anisotropy in rigid frictionless bead assemblies. Phys. Rev. E 78, 011307 (2008)

    Article  ADS  Google Scholar 

  20. Nichol, K., Zanin, A., Bastien, R., Wandersman, E., van Hecke, M.: Flow-induced agitations create a granular fluid. Phys. Rev. Lett. 104(7), 078302 (2010)

    Article  ADS  Google Scholar 

  21. Henann, D.L., Kamrin, K.: A predictive, size-dependent continuum model for dense granular flows. Proc. Natl. Acad. Sci. 110(17), 6730 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. Bouzid, M., Trulsson, M., Claudin, P., Clément, E., Andreotti, B.: Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111(23), 238301 (2013)

    Article  ADS  Google Scholar 

  23. Clark, A.H., Thompson, J.D., Shattuck, M.D., Ouellette, N.T., O’Hern, C.S.: Critical scaling near the yielding transition in granular media. Phys. Rev. E 97, 062901 (2018)

    Article  ADS  Google Scholar 

  24. Dijksman, J.A., Wortel, G.H., van Dellen, L.T.H., Dauchot, O., van Hecke, M.: Jamming, yielding, and rheology of weakly vibrated granular media. Phys. Rev. Lett. 107, 108303 (2011)

    Article  ADS  Google Scholar 

  25. Kirsch, F., Kirsch, K.: Ground Improvement by Deep Vibratory Methods. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  26. Lastakowski, H., Géminard, J.C., Vidal, V.: Granular friction: triggering large events with small vibrations. Sci. Rep. 5, 13455EP (2015)

    Article  ADS  Google Scholar 

  27. Popov, V.L.: Contact Mechanics and Friction. Springer, Berlin (2010)

    Book  Google Scholar 

  28. Braiman, Y., Hentschel, H.G.E., Family, F., Mak, C., Krim, J.: Tuning friction with noise and disorder. Phys. Rev. E 59(5), R4737 (1999)

    Article  ADS  Google Scholar 

  29. Krim, J., Yu, P., Behringer, R.P.: Stick-slip and the transition to steady sliding in a 2D granular medium and a fixed particle lattice. Pure Appl. Geophys. 168(12), 2259 (2011)

    Article  ADS  Google Scholar 

  30. Zadeh, A.A., Barés, J., Behringer, R.P.: Avalanches in a granular stick-slip experiment: detection using wavelets. In: EPJ Web Conference (EDP Sciences, 2017), vol. 140, p. 03038 (2017)

  31. Zadeh, A.A., Barés, J., Behringer, R.P.: Crackling to periodic dynamics in sheared granular media. arXiv preprint arXiv:1803.06028 (2018)

  32. Krim, J., Heyvaert, C., Van Haesendonck, I., Bruynseraede, Y.: Scanning tunneling microscopy observation of self-affine fractal roughness in ion-bombarded film surfaces. Phys. Rev. Lett. 70(1), 57 (1993)

    Article  ADS  Google Scholar 

  33. Krim, J., Indekeu, J.O.: Roughness exponents: a paradox resolved. Phys. Rev. E 48(2), 1576 (1993)

    Article  ADS  Google Scholar 

  34. He, G., Müser, M.H., Robbins, M.O.: Adsorbed layers and the origin of static friction. Science 284(5420), 1650 (1999)

    Article  ADS  Google Scholar 

  35. Müser, M.H., Wenning, L., Robbins, M.O.: Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86(7), 1295 (2001)

    Article  ADS  Google Scholar 

  36. Coffey, T., Krim, J.: Impact of substrate corrugation levels on the sliding friction of adsorbed films. Phys. Rev. Lett. 95, 076101 (2005)

    Article  ADS  Google Scholar 

  37. Luan, B., Robbins, M.O.: Effect of inertia and elasticity on stick-slip motion. Phys. Rev. Lett 93, 036105 (2004)

    Article  ADS  Google Scholar 

  38. Persson, B.N.J.: Surface topography and water contact angle of sandblasted and thermally annealed glass surfaces. J. Chem. Phys. 150(5), 054701 (2019)

    Article  ADS  Google Scholar 

  39. Zadeh, A.A., Barés, J., Socolar, J.E.S., Behringer, R.P.: Seismicity in sheared granular matter. arXiv preprint arXiv:1803.06028 (2018)

Download references

Acknowledgements

This work was supported by NSF DMR0906908 and NSF DMR0805204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abram H. Clark.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants

This research involved no human participants or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: In Memoriam of Robert P. Behringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, A.H., Behringer, R.P. & Krim, J. Vibration can enhance stick-slip behavior for granular friction. Granular Matter 21, 55 (2019). https://doi.org/10.1007/s10035-019-0895-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0895-5

Keywords

Navigation