Skip to main content
Log in

Friction weakening by mechanical vibrations: A velocity-controlled process

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Frictional weakening by vibrations was first invoked in the 70s to explain unusual fault slips and earthquakes, low viscosity during the collapse of impact craters or the extraordinary mobility of sturzstroms, peculiar rock avalanches which travels large horizontal distances. This mechanism was further invoked to explain the remote triggering of earthquakes or the abnormally large runout of landslides or pyroclastic flows. Recent experimental and theoretical works pointed out that the key parameter which governs frictional weakening in sheared granular media is the characteristic velocity of the vibrations. Here we show that the mobility of the grains is not mandatory and that the vibration velocity governs the weakening of both granular and solid friction. The critical velocity leading to the transition from stick-slip motion to continuous sliding is in both cases of the same order of magnitude, namely a hundred microns per second. It is linked to the roughness of the surfaces in contact.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sambursky, The Physical World of Late Antiquity (Princeton University Press, 1962) p. 188

  2. T. Baumberger, F. Heslot, B. Perrin, Nature 367, 544 (1994)

    Article  ADS  Google Scholar 

  3. C. Marone, Annu. Rev. Earth Planet. Sci. 26, 643 (1998)

    Article  ADS  Google Scholar 

  4. S. Nasuno, A. Kudrolli, A. Bak, J.P. Gollub, Phys. Rev. E 58, 2161 (1998)

    Article  ADS  Google Scholar 

  5. T. Baumberger, C. Caroli, Adv. Phys. 55, 279 (2006)

    Article  ADS  Google Scholar 

  6. G.S. Collins, H.J. Melosh, J. Geophys. Res. 108, 2473 (2003)

    ADS  Google Scholar 

  7. A. Lucas, A. Mangeney, J.P. Ampuero, Nat. Commun. 5, 3417 (2014)

    Article  ADS  Google Scholar 

  8. K. Xia, S. Huang, C. Marone, Geochem. Geophys. Geosyst. 14, 1012 (2013)

    Article  ADS  Google Scholar 

  9. C. Levy, A. Mangeney, F. Bonilla, C. Hibert, E.S. Calder, P. Smith, J. Geophys. Res. 120, 7536 (2015)

    Article  ADS  Google Scholar 

  10. H.J. Melosh, J. Geophys. Res. 84, 7513 (1979)

    Article  ADS  Google Scholar 

  11. H.J. Melosh, Nature 379, 601 (1996)

    Article  ADS  Google Scholar 

  12. P.A. Johnson, X. Jia, Nature 437, 871 (2005)

    Article  ADS  Google Scholar 

  13. M.G. Rozman, M. Urbakh, J. Klafter, Phys. Rev. E 57, 7340 (1998)

    Article  ADS  Google Scholar 

  14. J. Gao, W.D. Luedtke, U. Landman, J. Phys. Chem. B 102, 5033 (1998)

    Article  Google Scholar 

  15. P.A. Johnson, H. Savage, M. Knuth, J. Gomberg, C. Marone, Nature 451, 57 (2008)

    Article  ADS  Google Scholar 

  16. R. Capozza, A. Vanossi, A. Vezzani, S. Zapperi, Phys. Rev. Lett. 103, 085502 (2009)

    Article  ADS  Google Scholar 

  17. R. Capozza, S.M. Rubinstein, I. Barel, M. Urbakh, J. Fineberg, Phys. Rev. Lett. 107, 024301 (2011)

    Article  ADS  Google Scholar 

  18. M.F. Melhus, I.S. Aranson, Granular Matter 14, 151 (2012)

    Article  Google Scholar 

  19. F. Giacco, E. Lippiello, M. Pica Ciamarra, Phys. Rev. E 86, 016110 (2012)

    Article  ADS  Google Scholar 

  20. F. Giacco, L. Saggese, L. de Arcangelis, E. Lippiello, M. Pica Ciamarra, Phys. Rev. Lett. 115, 128001 (2015)

    Article  ADS  Google Scholar 

  21. H. Lastakowski, J.C. Géminard, V. Vidal, Sci. Rep. 5, 13455 (2015)

    Article  ADS  Google Scholar 

  22. A. Gnoli, L. de Arcangelis, F. Giacco, E. Lippiello, M. Pica Ciamarra, A. Puglisi, A. Sarracino, Phys. Rev. Lett. 120, 138001 (2018)

    Article  ADS  Google Scholar 

  23. J.A. Dijksman, G.H. Wortel, L.T.H. van Dellen, O. Dauchot, M. van Hecke, Phys. Rev. Lett. 107, 108303 (2011)

    Article  ADS  Google Scholar 

  24. G. Wortel, O. Dauchot, M. van Hecke, Phys. Rev. Lett. 117, 198002 (2016)

    Article  ADS  Google Scholar 

  25. X. Jia, T. Brunet, J. Laurent, Phys. Rev. E 84, 020301(R) (2011)

    Article  ADS  Google Scholar 

  26. E. DeGiuli, G. Düring, M. Wyart, Phys. Rev. E 91, 062206 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. B. Ferdowsi, M. Griffa, R.A. Guyer, P.A. Johnson, C. Marone, J. Carmeliet, Geophys. Res. Lett. 42, 9750 (2015)

    Article  ADS  Google Scholar 

  28. E. DeGiuli, M. Wyart, Proc. Natl. Acad. Sci. U.S.A. 114, 9284 (2017)

    Article  ADS  Google Scholar 

  29. J.C. Gu, J.R. Rice, A.L. Ruina, S.T. Tse, J. Mech. Phys. Solids 32, 167 (1984)

    Article  ADS  Google Scholar 

  30. J.R. Rice, S.T. Tse, J. Geophys. Res. 91, 521 (1986)

    Article  ADS  Google Scholar 

  31. F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids I (Clarendon Press, London, 1950)

  32. M. Alava, K. Niskanen, Rep. Prog. Phys. 69, 669 (2006)

    Article  ADS  Google Scholar 

  33. H. Alarcón, J.C. Géminard, F. Melo, Phys. Rev. E 86, 061303 (2012)

    Article  ADS  Google Scholar 

  34. C. Derec, A. Ajdari, F. Lequeux, Eur. Phys. J. E 2, 355 (2001)

    Article  Google Scholar 

  35. A. Pons, A. Amon, T. Darnige, J. Crassous, E. Clément, Phys. Rev. E 92, 020201(R) (2015)

    Article  ADS  Google Scholar 

  36. P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, F. Zamponi, Nat. Commun. 5, 3725 (2014)

    Article  ADS  Google Scholar 

  37. S. Borodulina, A. Kulachenko, S. Galland, M. Nygårds, Nord. Pulp Paper Res. J. 27, 318 (2012)

    Article  Google Scholar 

  38. B. Ferdowsi, M. Griffa, R.A. Guyer, P.A. Johnson, J. Carmeliet, Acta Mech. 225, 2227 (2014)

    Article  Google Scholar 

  39. P.A. Johnson, B. Carpenter, M. Knuth, B.M. Kaproth, P.Y. Le Bas, E.G. Daub, C. Marone, J. Geophys. Res. 117, B04310 (2012)

    Article  ADS  Google Scholar 

  40. J. Gomberg, P.A. Reasenberg, P. Bodin, R.A. Harris, Nature 411, 462 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -C. Géminard.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, V., Oliver, C., Lastakowski, H. et al. Friction weakening by mechanical vibrations: A velocity-controlled process. Eur. Phys. J. E 42, 91 (2019). https://doi.org/10.1140/epje/i2019-11855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11855-2

Keywords

Navigation