Skip to main content
Log in

Numerical and experimental studies of the base pressures beneath stockpiles

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Stockpiles are common for storage of bulk solids in many industrial sectors. One interesting phenomenon is that there is a significant dip of the base pressure beneath the apex of the pile which may have significant implications in the design of stockpile facilities and related support structures. This paper presents a numerical and experimental study of this phenomenon. Experiments have been conducted to measure the base pressure distribution under a stockpile formed with iron ore pellets and significant central stress minimum was revealed. Continuum analysis using the finite element method (FEM) was conducted to simulate the stress distribution in the test pile. It showed the critical importance of progressive pile development and nonlinear constitutive models. To investigate the underlying mechanisms further, simulations using the discrete element method (DEM) were conducted, which related well to the FEM predictions and revealed key aspects of the inter-particle force patterns. Both the FEM and DEM predictions show a dip in the base pressure distribution which is in agreement with test results, and reveal new key features of the mechanics of such piles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nedderman R.M.: Statics and kinematics of granular materials. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  2. Savage, S.B.: Problems in the statics and dynamics of granular materials. In: Powders and Grains 97, pp. 185–194. Balkema, Rotterdam, Netherlands (1997)

  3. Savage, S.B.: Modeling and granular material boundary value problems. In: Physics of Dry Granular Media, pp. 25–96. Kluwer (1998)

  4. Cates M.E., Wittmer J.P., Bouchaud J.P., Claudin P.: Development of stresses in cohesionless poured sand. Philos. Transact. Math. Phys. Eng. Sci. Ser. A 1998(1747), 2535–2560 (1998)

    Google Scholar 

  5. Atman A.P.F., Brunet P., Geng J., Reydellet G., Claudin P., Behringer R.P., Clément E.: From the stress response function (back) to the sand pile ‘dip’. Eur. Phys. J. E 17(1), 93–100 (2005)

    Article  Google Scholar 

  6. Ooi J.Y., AI J., Zhong Z., Chen J.F., Rotter J.M.: Progressive pressure measurements beneath a granular pile with and without base deflection. In: Chen, J.F., Ooi, J.Y., Teng, J.G. (eds) Structures and Granular Solids: From Scientific Principles to Engineering Applications, pp. 87–92. CRC Press, London (2008)

    Google Scholar 

  7. Askegaard V.: Design and application of stress and strain cells with small measuring errors. NDT Int. 14(5), 271–277 (1981)

    Article  Google Scholar 

  8. Askegaard, V.: Three component pressure cells for steel model silo, Report S.8817. Department of Structural Engineering, Technical University of Denmark (1989)

  9. Vanel L., Howell D., Clark D., Behringer R.P., Clément E.: Memories in sand: experimental tests of construction history on stress distributions under sandpiles. Phys. Rev. E 60(5), R5040–5043 (1999)

    Article  ADS  Google Scholar 

  10. McBride W.: Base pressure measurements under a scale model stockpile. Part. Sci. Technol. 24(1), 59–70 (2006)

    Article  MathSciNet  Google Scholar 

  11. Al Hattamleh O., Muhunthan B., Zbib H.M.: Stress distribution in granular heaps using multi-slip formulation. Int. J. Numer. Anal. Methods Geomech. 29(7), 713–727 (2005)

    Article  MATH  Google Scholar 

  12. Anand L., Gu C.: Granular materials: constitutive equations and strain localization. J. Mech. Phys. Solids 48(8), 1701–1733 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Jeong H.-Y., Moore I.D.: Calculations for central stress minimum under sand piles using continuum analysis. ZAMM 90(1), 65–71 (2010)

    Article  MATH  Google Scholar 

  14. Modaressi A., Boufellouh S., Evesque P.: Modeling of stress distribution in granular piles: Comparison with centrifuge experiments. Chaos Interdiscip. J. Nonlinear Sci. 9(3), 523–543 (1999)

    Article  MATH  Google Scholar 

  15. Tejchman J., Wu W.: FE-calculations of stress distribution under prismatic and conical sandpiles within hypoplasticity. Granular Matter 10(5), 399–405 (2008)

    Article  ADS  Google Scholar 

  16. Ai, J.: Particle scale and bulk scale investigation of granular piles and silos. Ph.D. thesis, School of Engineering, The University of Edinburgh, Edinburgh, UK (2010)

  17. AS3774-1996: Australian Standard: Loads on bulk solids containers. Association of Australia, Sydney (1996)

  18. EN1991-4: Eurocode 1: Basis of design and actions on structures. Part 4—silos and tanks. CEN, Brussels (2006)

  19. SIMULIA: Abaqus Analysis: User’s Manual. Dassault Systèmes (2007)

  20. Cantelaube, F., Didwania, A.,Goddard, J.: Elasto-plastic arching in two dimensional granular heaps. Phys. Dry Granular Media, 15–26 (1998)

  21. Didwania A., Cantelaube F., Goddard J.: Static multiplicity of stress states in granular heaps. Proc. R. Soc. A Math. Phys. Eng. Sci. 456(2003), 2569–2588 (2000)

    Article  ADS  MATH  Google Scholar 

  22. Samsioe A.: Stresses in downstream part of an earth or a rock fill dam. Geotechnique 5, 200–223 (1955)

    Article  Google Scholar 

  23. Michalowski R.L., Park N.: Admissible stress fields and arching in piles of sand. Geotechnique 54(8), 529–538 (2004)

    Article  Google Scholar 

  24. Cundall P.A., Strack O.D.L.: Discrete numerical-model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  25. Yu A.B.: Discrete element method: an effective way for particle scale research of particulate matter. Eng. Comput. 21(2/3/4), 205–214 (2004)

    Article  MATH  Google Scholar 

  26. Zuriguel I., Mullin T., Rotter J.M.: Effect of particle shape on the stress dip under a sandpile. Phys. Rev. Lett. 98(2), 028001 (2007)

    Article  ADS  Google Scholar 

  27. Zuriguel I., Mullin T.: The role of particle shape on the stress distribution in a sandpile. Proc. R. S. A Math. Phys. Eng. Sci. 464(2089), 99–116 (2008)

    Article  MathSciNet  Google Scholar 

  28. Smid, J., Novosad, J.: Pressure distribution under heaped bulk solids. In: Proceedings of 1981 Powtech Conference, Ind. Chem. Eng. Symp., vol. 63. (1981)

  29. Lee, I.K.,Herington, J.R.: Stresses beneath granular embankments. In: Proceedings of the 1st Australia-New Zealand conference on geomechanics 1. Melbourne, pp. 291–296. (1971)

  30. Trollope, D.H.: The stability of wedges of granular materials. Ph.D. thesis thesis, University of Melbourne (1956)

  31. Wiesner, T.J.: Failure stresses beneath granular embankments. In: Developments in theoretical geomechanics: The John Booker Memorial Symposium. Rotterdam: Balkema, pp. 33–41 (2000)

  32. Geng J., Longhi E., Behringer R.P., Howell D.W.: Memory in two-dimensional heap experiments. Phys. Rev. E 64(6), 060301 (2001)

    Article  ADS  Google Scholar 

  33. Itasca: PFC2D/3D. Itasca Consulting Group, Inc., Minneapolis, Minnesota, USA (2004)

  34. Tsuji Y., Tanaka T., Ishida T.: Lagrangian numerical-simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239–250 (1992)

    Article  Google Scholar 

  35. Matuttis H.G.: Simulation of the pressure distribution under a two-dimensional heap of polygonal particles. Granular Matter 1(2), 83–91 (1998)

    Article  Google Scholar 

  36. Snoeijer J., Vlugt T., van Hecke M., van Saarloos W.: Force network ensemble: a new approach to static granular matter. Phys. Rev. Lett. 92(5), 54302 (2004)

    Article  ADS  Google Scholar 

  37. Luding S.: Stress distribution in static two-dimensional granular model media in the absence of friction. Phys. Rev. E 55(4), 4720–4729 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, J., Chen, J.F., Rotter, J.M. et al. Numerical and experimental studies of the base pressures beneath stockpiles. Granular Matter 13, 133–141 (2011). https://doi.org/10.1007/s10035-010-0215-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0215-6

Keywords

Navigation