Skip to main content
Log in

Buoyancy driven convection in vertically shaken granular matter: experiment, numerics, and theory

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Buoyancy driven granular convection is studied for a shallow, vertically shaken granular bed in a quasi 2D container. Starting from the granular Leidenfrost state, in which a dense particle cluster floats on top of a dilute gaseous layer of fast particles (Meerson et al. in Phys Rev Lett 91:024301, 2003; Eshuis et al. in Phys Rev Lett 95:258001, 2005), we witness the emergence of counter-rotating convection rolls when the shaking strength is increased above a critical level. This resembles the classical onset of convection—at a critical value of the Rayleigh number—in a fluid heated from below. The same transition, even quantitatively, is seen in molecular dynamics simulations, and explained by a hydrodynamic-like model in which the granular material is treated as a continuum. The critical shaking strength for the onset of granular convection is accurately reproduced by a linear stability analysis of the model. The results from experiment, simulation, and theory are in good agreement. The present paper extends and completes our earlier analysis (Eshuis et al. in Phys Rev Lett 104:038001, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Meerson et al. [71] had numerically predicted such a state 2 years prior to its experimental observation by Eshuis et al. [27]. Meerson et al. called the state ‘floating cluster’.

  2. Note that higher values for \(e\) are obtained when a higher friction coefficient is used, reflecting that the total energy dissipation in the system must stay constant.

  3. One can also collocate the continuity equation at Gauss-Lobatto points, but that calls for using artificial boundary conditions for the density field that may lead to one spurious eigenvalue [21].

  4. The results of Fig. 9 represent experiments with glass beads of \(d=1\) mm. Also for \(F=6.2\) layers of steel beads we found the onset of convection (at \(S_\mathrm{conv}=62\)) to match the theoretical prediction very well.

References

  1. Jenkins, J.T., Savage, S.B.: A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187 (1983)

    Article  ADS  MATH  Google Scholar 

  2. Haff, P.K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401 (1983)

    Article  ADS  MATH  Google Scholar 

  3. Jenkins, J., Richman, M.: Boundary conditions for plane flows of smooth nearly elastic circular discs. J. Fluid Mech. 171, 53 (1986)

    Google Scholar 

  4. Campbell, C.S.: Rapid granular flows. Ann. Rev. Fluid Mech. 22, 57 (1990)

    Article  ADS  Google Scholar 

  5. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259 (1996)

    Article  ADS  Google Scholar 

  6. Behringer, R.P., Jaeger, H.M., Nagel, S.R.: The physics of granular materials. Phys. Today 49, 32 (1996)

    Google Scholar 

  7. Sela, N., Goldhirsch, I.: Hydrodynamic equations for rapid flows of smooth inelastic spheres to Burnett order. J. Fluid Mech. 361, 41 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Brey, J.J., Dufty, J.W., Kim, C.S., Santos, A.: Hydrodynamics for granular flow at low density. Phys. Rev. E 58, 4638 (1998)

    Article  ADS  Google Scholar 

  9. Kadanoff, L.P.: Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71, 435 (1999)

    Article  ADS  Google Scholar 

  10. Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  11. Goldhirsch, I., Noskowicz, S., Bar-Lev, O.: Nearly smooth granular gases. Phys. Rev. Lett. 95, 068002 (2005)

    Article  ADS  Google Scholar 

  12. Du, Y., Li, H., Kadanoff, L.P.: Breakdown of hydrodynamics in a one-dimensional system of inelastic particles. Phys. Rev. Lett. 74, 1268 (1995)

    Article  ADS  Google Scholar 

  13. Sela, N., Goldhirsch, I.: Hydrodynamics of a one-dimensional granular medium. Phys. Fluids 7, 507 (1995)

    Article  ADS  MATH  Google Scholar 

  14. Duran, J.: Sand, Powders and Grains: An Introduction to the Physics of Granular Materials. Springer, New-York (1999)

    Google Scholar 

  15. Aranson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641 (2006)

    Article  ADS  Google Scholar 

  16. Goldhirsch, I., Zanetti, G.: Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619 (1993)

    Article  ADS  Google Scholar 

  17. Kudrolli, A., Wolpert, M., Gollub, J.P.: Cluster formation due to collisions in granular material. Phys. Rev. Lett. 78, 1383 (1997)

    Google Scholar 

  18. Eggers, J.: Sand as Maxwell’s demon. Phys. Rev. Lett. 83, 5322 (1999)

    Article  ADS  Google Scholar 

  19. van der Weele, K., van der Meer, D., Versluis, M., Lohse, D.: Hysteretic custering in granular gas. Europhys. Lett. 53, 328 (2001)

    Google Scholar 

  20. van der Meer, D., van der Weele, K., Lohse, D.: Sudden death of a granular cluster. Phys. Rev. Lett. 88, 174302 (2002)

    Article  ADS  Google Scholar 

  21. Alam, M., Nott, P.R.: Stability of plane couette flow of a granular material. J. Fluid Mech. 377, 99 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Forterre, Y., Pouliquen, O.: Stability analysis of rapid granular chute flows: formation of longitudinal vortices. J. Fluid Mech. 467, 361 (2002)

    Article  ADS  MATH  Google Scholar 

  23. Alam, M.: Streamwise vortices and density patterns in rapid granular couette flow: a linear stability analysis. J. Fluid Mech. 553, 1 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Lohse, D., Bergmann, R., Mikkelsen, R., Zeilstra, C., van der Meer, D., Versluis, M., van der Weele, K., van der Hoef, M., Kuipers, H.: Impact on soft sand: void collapse and jet formation. Phys. Rev. Lett. 93, 198003 (2004)

    Article  ADS  Google Scholar 

  25. Royer, J.R., Corwin, E.I., Flior, A., Cordero, M.L., Rivers, M.L., Eng, P.J., Jaeger, H.M.: Formation of granular jets observed by high-speed x-ray radiography. Nat. Phys. 1, 164 (2005)

  26. Kuipers, J.A.M.: Multilevel modelling of dispersed multiphase flows. Oil Gas Sci. Technol. Rev. IFP 55, 427 (2000)

    Article  Google Scholar 

  27. Eshuis, P., van der Meer, D., Alam, M., Gerner, H.J., van der Weele, K., Lohse, D.: Onset of convection in strongly shaken granular. Matter Phys. Rev. Lett. 104, 038001 (2010)

    Article  ADS  Google Scholar 

  28. Eshuis, P., van der Weele, K., van der Meer, D., Lohse, D.: Granular leidenfrost effect: experiment and theory of floating particle clusters. Phys. Rev. Lett. 95, 258001 (2005)

    Article  ADS  Google Scholar 

  29. Eshuis, P., van der Weele, K., van der Meer, D., Bos, R., Lohse, D.: Phase diagram of vertically shaken granular matter. Phys. Fluids 19, 123301 (2007)

    Article  ADS  Google Scholar 

  30. Normand, C., Porneau, Y., Velarde, M.G.: Convective instability: a physicist’s approach. Rev. Mod. Phys. 49, 581 (1977)

    Article  ADS  Google Scholar 

  31. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. E 15, 319 (1977)

    Article  ADS  Google Scholar 

  32. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, New-York (1981)

    Google Scholar 

  33. Bodenschatz, E., Pesch, W., Ahlers, G.: Recent developments in rayleigh-bénard convection. Annu. Rev. Fluid Mech. 32, 709 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  34. Rogers, J.L., Schatz, M.F., Bougie, J.L., Swift, J.B.: Rayleigh-bénard convection in a vertically oscillated fluid layer. Phys. Rev. Lett. 84, 87 (2000)

    Article  ADS  Google Scholar 

  35. Bormann, A.S.: The onset of convection in the rayleigh-bénard problem for compressible fluids. Cont. Mech. Thermodyn. 13, 9 (2001)

    Article  MATH  Google Scholar 

  36. Oh, J., Ahlers, G.: Thermal-noise effect on the transition to rayleigh-bénard convection. Phys. Rev. Lett. 91, 094501 (2003)

    Article  ADS  Google Scholar 

  37. Mutabazi, I., Guyon, E., Wesfreid, J.E.: Dynamics of Spatio-Temporal Cellular Structures, Henri Bénard Centenary Review, vol. 207. Springer, New York (2006)

    Book  Google Scholar 

  38. Knight, J.B., Jaeger, H.M., Nagel, S.R.: Vibration-induced size separation in granular media: the convection connection. Phys. Rev. Lett. 70, 3728 (1993)

    Article  ADS  Google Scholar 

  39. Clément, E., Rajchenbach, J.: Fluidization of a bidimensional powder. Europhys. Lett. 16, 133 (1991)

    Article  ADS  Google Scholar 

  40. Gallas, J.A.C., Herrmann, H.J., Sokolowski, S.: Convection cells in vibrating granular media. Phys. Rev. Lett. 69, 1371 (1992)

    Article  ADS  Google Scholar 

  41. Taguchi, Y.-H.: Taguchi, New origin of a convective motion: Elastically induced convection in granular materials. Phys. Rev. Lett. 69, 1367 (1992)

    Article  ADS  Google Scholar 

  42. Luding, S., Clément, E., Blumen, A., Rajchenbach, J., Duran, J.: The onset of convection in molecular dynamics simulations of grains. Phys. Rev. E 50, R1762 (1994)

    Article  ADS  Google Scholar 

  43. Hayakawa, H., Yue, S., Hong, D.C.: Hydrodynamic description of granular convection. Phys. Rev. Lett. 75, 2328 (1995)

    Article  ADS  Google Scholar 

  44. Ehrichs, E.E., Jaeger, H.M., Karczmar, G.S., Knight, J.B., Kuperman, V.Y., Nagel, S.R.: Granular convection observed by magnetic resonance imaging. Science 267, 1632 (1995)

    Article  ADS  Google Scholar 

  45. Bourzutschky, M., Miller, J.: Granular convection in a vibrated fluid. Phys. Rev. Lett. 74, 2216 (1995)

    Article  ADS  Google Scholar 

  46. Aoki, K.M., Akiyama, T., Maki, Y., Watanabe, T.: Convective roll patterns in vertically vibrated beds of granules. Phys. Rev. E 54, 874 (1996)

    Article  ADS  Google Scholar 

  47. Knight, J.B., Ehrichs, E.E., Kuperman, V.Y., Flint, J.K., Jaeger, H.M., Nagel, S.R.: Experimental study of granular convection. Phys. Rev. E 54, 5726 (1996)

    Article  ADS  Google Scholar 

  48. Lan, Y., Rosato, A.D.: Convection related phenomena in granular dynamics simulations of vibrated beds. Phys. Fluids 9, 3615 (1997)

    Article  ADS  Google Scholar 

  49. Aoki, K.M., Akiyama, T.: Control parameter in granular convection. Phys. Rev. E 58, 4629 (1998)

    Article  ADS  Google Scholar 

  50. Bizon, C., Shattuck, M.D., Swift, J.B., McCormick, W.D., Swinney, H.L.: Patterns in 3d vertically oscillated granular layers: simulation and experiment. Phys. Rev. Lett. 80, 57 (1998)

    Article  ADS  Google Scholar 

  51. Ramírez, R., Risso, D., Cordero, P.: Thermal convection in fluidized granular systems. Phys. Rev. Lett. 85, 1230 (2000)

    Article  ADS  Google Scholar 

  52. Hsiau, S.S., Chen, C.H.: Granular convection cells in a vertical shaker. Powder Technol. 111, 210 (2000)

    Article  Google Scholar 

  53. Wildman, R.D., Huntley, J.M., Parker, D.J.: Convection in highly fluidized three-dimensional granular beds. Phys. Rev. Lett. 86, 3304 (2001)

    Article  ADS  Google Scholar 

  54. Sunthar, P., Kumaran, V.: Characterization of the stationary states of a dilute vibrofluidized granular bed. Phys. Rev. E 64, 041303 (2001)

    Article  ADS  Google Scholar 

  55. He, X., Meerson, B., Doolen, G.: Hydrodynamics of thermal granular convection. Phys. Rev. E 65, 030301 (2002)

    Article  ADS  Google Scholar 

  56. Garcimartin, A., Maza, D., Ilquimiche, J.L., Zuriguel, I.: Convective motion in a vibrated granular layer. Phys. Rev. E 65, 031303 (2002)

    Article  ADS  Google Scholar 

  57. Talbot, J., Viot, P.: Wall-enhanced convection in vibrofluidized granular systems. Phys. Rev. Lett. 89, 064301 (2002)

    Article  ADS  Google Scholar 

  58. Hsiau, S.S., Wang, P.C., Tai, C.H.: Convection cells and segregation in a vibrated granular bed. AIChE J. 48, 1430 (2002)

    Article  Google Scholar 

  59. Ohtsuki, T., Ohsawa, T.: Hydrodynamics for convection in vibrating beds of cohesionless granular materials. J. Phys. Soc. Jpn. 72, 1963 (2003)

    Article  ADS  MATH  Google Scholar 

  60. Cordero, P., Ramirez, R., Risso, D.: Buoyancy driven convection and hysteresis in granular gases: numerical solution. Physica A 327, 82 (2003)

    Article  ADS  MATH  Google Scholar 

  61. Miao, G., Huang, K., Yun, Y., Wei, R.: Active thermal convection in vibrofluidized granular systems. Eur. Phys. J. B 40, 301 (2004)

    Article  ADS  Google Scholar 

  62. Tai, C.H., Hsiau, S.S.: Dynamics behaviors of powders in a vibrating bed. Powder Technol. 139, 221 (2004)

    Article  Google Scholar 

  63. Risso, D., Soto, R., Godoy, S., Cordero, P.: Friction and convection in a vertically vibrated granular system. Phys. Rev. E 72, 011305 (2005)

    Article  ADS  Google Scholar 

  64. Isobe, M.: Bifurcations of a driven granular system under gravity. Phys. Rev. E 64, 031304 (2001)

    Google Scholar 

  65. Khain, E., Meerson, B.: Onset of thermal convection in a horizontal layer of granular gas. Phys. Rev. E 67, 021306 (2003)

    Google Scholar 

  66. Paolotti, D., Barrat, A., Marconi, U.M.B., Puglisi, A.: Thermal convection in monodisperse and bidisperse granular gases: a simulations study. Phys. Rev. E 69, 061304 (2004)

    Google Scholar 

  67. Pak, H.K., Behringer, R.P.: Surface waves in vertically vibrated granular materials. Phys. Rev. Lett. 71, 1832 (1993)

    Article  ADS  Google Scholar 

  68. van der Hoef, M.A., Ye, M., van Sint Annaland, M., Andrews IV, A.T., Sundaresan, S., Kuipers, J.A.M.: Multi-scale modeling of gas-fluidized beds. Adv. Chem. Eng. 31, 65 (2006)

    Article  Google Scholar 

  69. Deen, N.G., van Sint Annaland, M., van der Hoef, M.A., Kuipers, J.A.M.: Review of discrete particle modeling of fluidized beds. Chem. Eng. Sc. 62, 28 (2007)

    Article  Google Scholar 

  70. Grossman, E.L., Zhou, T., Ben-Naim, E.: Towards granular hydrodynamics in two-dimensions. Phys. Rev. E 55, 4200 (1997)

    Article  ADS  Google Scholar 

  71. Meerson, B., Pöschel, T., Bromberg, Y.: Close-packed floating clusters: granular hydrodynamics beyond the freezing point? Phys. Rev. Lett. 91, 024301 (2003)

    Article  ADS  Google Scholar 

  72. Brey, J.J., Ruiz-Montero, M.J., Moreno, F.: Hydrodynamics of an open vibrated granular system. Phys. Rev. E 63, 061305 (2001)

    Article  ADS  Google Scholar 

  73. Garcia-Rojo, R., Luding, S., Brey, J.J.: Transport coefficients for dense hard-disk systems. Phys. Rev. E 74, 061305 (2006)

    Article  ADS  Google Scholar 

  74. Khain, E.: Hydrodynamics of fluid-solid coexistence in dense shear granular flow. Phys. Rev. E 75, 051310 (2007)

    Article  ADS  Google Scholar 

  75. Orszag, S.A.: Accurate solution of the orr-sommerfeld stability equation. J. Fluid Mech. 50, 689 (1971)

    Article  ADS  MATH  Google Scholar 

  76. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006)

    Google Scholar 

Download references

Acknowledgments

We would like to dedicate this paper to the memory of Professor Isaac Goldhirsch. We have discussed the issue of applicability of contiuum equations to shaken granular matters many times with him, also in the context of this present work, and were always inspired by these discussions. His insight was deep and he was a real leader of the field. We would also like to thank Robert Bos for performing many of the experiments presented in this paper. This work is part of the research program of FOM, which is financially supported by NWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Lohse.

Appendices

Appendix A: Alternative models for the shear viscosity \(\mu \)

There is quite some discussion on the shear viscosity \(\mu \) in granular systems and consequently various expressions have been proposed in the literature. Brey et al. [72] give the following relation for two dimensions and for a dilute granular gas:

$$\begin{aligned} \mu (T)=\frac{1}{2d}\sqrt{\frac{mT}{\pi }}\mu ^*(e), \end{aligned}$$
(61)

where \(\mu ^{*}(e)\) is a function of the restitution coefficient \(e\).

Ohtsuki and Ohsawa [59] deduce an expression for \(\mu \) including a dependence on the density \(n\) to account for excluded volume effects:

$$\begin{aligned} \mu (n,T)=\left\{ \frac{1}{4}n^2d^3 + \frac{1}{2\pi d}\left( 1+\frac{\pi }{4}nd^2 \right) ^2 \right\} \sqrt{\pi mT}. \end{aligned}$$
(62)

He et al. [55] propose that the shear viscosity should be equal to the thermal conductivity \(\kappa \):

$$\begin{aligned} \mu (n,T)=\kappa (n,T), \end{aligned}$$
(63)

In the present paper we have found good correspondence between experiment and theory using a more general form based on dimension analysis:

$$\begin{aligned} \mu (n,T)=m\text {Pr}\,\kappa (n,T), \end{aligned}$$
(64)

where \(\text {Pr}\) is the Prandtl number. We used it as a fit parameter for the phase diagram of Fig. 9 and found that \(\text {Pr}=1.7\) gave good agreement.

Figure 13 shows the influence of \(\mu \) on the resulting growth rate \(\gamma (k_x)\), comparing the results obtained if one uses the expression by Brey et al. (61) with those obtained for expression (64). It is seen that the viscosity definition of (64) has a stabilizing effect on the Leidenfrost state with increasing number of particle layers \(F\), in agreement with the experimental observations, whereas (61) has a destabilizing effect. We show in the \((S,F)\)-phase diagram of Fig. 9 that (64) yields qualitative and quantitative agreement with the experimental results.

Fig. 13
figure 13

Theory: Influence of the choice for the shear viscosity \(\mu \) on the growth rate \(\gamma (k_x)\) for two Leidenfrost states at the same shaking strength \(S=200\): a For \(F=6\) layers the region of instability of the Leidenfrost state is significantly reduced by going from the expression for \(\mu (T)\) by Brey et al. [(61), black dots] to \(\mu (n,T)\) as defined by (64) with \(\text {Pr}=1.7\) (grey crosses. b For \(F=11\) layers the stabilizing effect is even stronger. Note that the range of unstable \(k_x\)-values for the black dots has increased compared to the \(F=6\) Leidenfrost state, whereas the opposite is true for grey crosses

Appendix B: Relations for the pressure, dissipation, and transport coefficients

For the matrix problem (51) we need to specify the elements of the matrices \(\mathbf A ,\,\mathbf B \), and \(\mathbf C \) of (52)–(54), which contain \(p,\,I\), and the transport coefficients and their derivatives. These are given below:

First of all, we have the equation of state for the pressure \(\widetilde{p}\) and its derivatives:

$$\begin{aligned}&\widetilde{p}_L = \widetilde{n}_L\widetilde{T}_L \frac{1+\widetilde{n}_L}{1-\widetilde{n}_L},\end{aligned}$$
(65)
$$\begin{aligned}&\frac{\partial \widetilde{p}}{\partial \widetilde{n}}\Big |_L = \widetilde{T}_L \frac{1+2\widetilde{n}_L-\widetilde{n}_L^2}{(1-\widetilde{n}_L)^2}, \end{aligned}$$
(66)
$$\begin{aligned}&\frac{\partial }{\partial \widetilde{y}}\left( \frac{\partial \widetilde{p}}{\partial \widetilde{n}}\Big |_L \right) = \frac{(1-\widetilde{n}_L)(1+2\widetilde{n}_L-\widetilde{n}_L^2) \frac{\partial \widetilde{T}_L}{\partial \widetilde{y}} + 4 \widetilde{T}_L\frac{\partial \widetilde{n}_L}{\partial \widetilde{y}}}{(1-\widetilde{n}_L)^3},\nonumber \\ \end{aligned}$$
(67)
$$\begin{aligned}&\frac{\partial \widetilde{p}}{\partial \widetilde{T}}\Big |_L = \widetilde{n}_L \frac{1+\widetilde{n}_L}{1-\widetilde{n}_L}, \end{aligned}$$
(68)
$$\begin{aligned}&\frac{\partial }{\partial \widetilde{y}} \left( \frac{\partial \widetilde{p}}{\partial \widetilde{T}}\Big |_L \right) = \left[ \frac{1+2\widetilde{n}_L - \widetilde{n}_L^2}{(1 - \widetilde{n}_L)^2} \right] \frac{\partial \widetilde{n}_L}{\partial \widetilde{y}}. \end{aligned}$$
(69)

The expressions for the energy dissipation rate \(\widetilde{I}\) read as follows:

$$\begin{aligned}&\widetilde{I} = \frac{\varepsilon }{\gamma } \frac{\widetilde{n}\widetilde{T}^{3/2}}{\widetilde{\ell }},\end{aligned}$$
(70)
$$\begin{aligned}&\frac{\partial \widetilde{I}}{\partial \widetilde{n}}\Big |_L = \frac{\varepsilon }{\gamma }\widetilde{T}^{3/2} \left( \frac{\widetilde{\ell } - \widetilde{n} \frac{\partial \widetilde{\ell }}{\partial \widetilde{n}}}{\widetilde{\ell }^2} \right) , \end{aligned}$$
(71)
$$\begin{aligned}&\frac{\partial \widetilde{I}}{\partial \widetilde{T}}\Big |_L = \frac{3\varepsilon }{2\gamma } \frac{\widetilde{n} \sqrt{\widetilde{T}}}{\widetilde{\ell }}. \end{aligned}$$
(72)

The mean free path \(\widetilde{\ell }\) and its derivatives are given by:

$$\begin{aligned}&\widetilde{\ell } = \sqrt{\frac{3}{32}}\left[ \frac{1}{\widetilde{n}} \left( \frac{1-\widetilde{n}}{1-a\widetilde{n}}\right) \right] ,\end{aligned}$$
(73)
$$\begin{aligned}&\frac{\partial \widetilde{\ell }}{\partial \widetilde{n}} = \sqrt{\frac{3}{32}} \left( \frac{-a\widetilde{n}^2 + 2a\widetilde{n}-1}{\widetilde{n}^2\left( 1-a\widetilde{n} \right) ^2} \right) ,\end{aligned}$$
(74)
$$\begin{aligned}&\frac{\partial ^2\widetilde{\ell }}{\partial \widetilde{n}^2} = 2\sqrt{\frac{3}{32}} \left( \frac{-a^2\widetilde{n}^3 + 3a^2\widetilde{n}^2 - 3a\widetilde{n} + 1}{\widetilde{n}^3 \left( 1-a\widetilde{n} \right) ^3}\right) . \end{aligned}$$
(75)

We continue with the transport coefficient for the thermal conductivity \(\widetilde{\kappa }\) and its derivatives:

$$\begin{aligned}&\widetilde{\kappa }_L = \frac{\left( \alpha \widetilde{\ell } +1 \right) ^2}{\widetilde{\ell }} \widetilde{n} \sqrt{\widetilde{T}},\end{aligned}$$
(76)
$$\begin{aligned}&\frac{\partial \widetilde{\kappa }_L}{\partial \widetilde{y}} = \frac{\partial \widetilde{\kappa }_L}{\partial \widetilde{n}} \frac{\partial \widetilde{n}}{\partial \widetilde{y}} + \frac{\partial \widetilde{\kappa }_L}{\partial \widetilde{T}} \frac{\partial \widetilde{T}}{\partial \widetilde{y}},\end{aligned}$$
(77)
$$\begin{aligned}&\frac{\partial \widetilde{\kappa }}{\partial \widetilde{n}}\Big |_L = \sqrt{T} \left[ \frac{(\alpha \widetilde{\ell } + 1)^2}{\widetilde{\ell }} + \widetilde{n} \frac{\alpha ^2 \widetilde{\ell }^2 - 1}{\widetilde{\ell }^2} \frac{\partial \widetilde{\ell }}{\partial \widetilde{n}} \right] , \end{aligned}$$
(78)
$$\begin{aligned}&\frac{\partial }{\partial \widetilde{y}} \left( \frac{\partial \widetilde{\kappa }}{\partial \widetilde{n}}\Big |_L \right) = \frac{\partial }{\partial \widetilde{n}} \left( \frac{\partial \widetilde{\kappa }}{\partial \widetilde{n}}\Big |_L \right) \frac{\partial \widetilde{n}}{\partial \widetilde{y}} + \frac{\partial }{\partial \widetilde{T}} \left( \frac{\partial \widetilde{\kappa }}{\partial \widetilde{n}}\Big |_L \right) \frac{\partial \widetilde{T}}{\partial \widetilde{y}},\nonumber \\ \end{aligned}$$
(79)
$$\begin{aligned}&\frac{\partial }{\partial \widetilde{n}} \left( \frac{\partial \widetilde{\kappa }}{\partial \widetilde{n}}\Big |_L \right) \nonumber \\&\quad \!=\! \sqrt{\widetilde{T}} \left[ \frac{ 2( \alpha ^2\widetilde{\ell }^2\!-\!1) \frac{\partial \widetilde{\ell }}{\partial \widetilde{n}} + \frac{2\widetilde{n}}{\widetilde{\ell }}\left( \frac{\partial \widetilde{\ell }}{\partial \widetilde{n}} \right) ^2 \!+\! \widetilde{n}( \alpha ^2\widetilde{\ell }^2\!-\!1)\frac{\partial ^2 \widetilde{\ell }}{\partial \widetilde{n}^2} }{\widetilde{\ell }^2} \right] .\nonumber \\ \end{aligned}$$
(80)
$$\begin{aligned}&\frac{\partial }{\partial \widetilde{T}} \left( \frac{\partial \widetilde{\kappa }}{\partial \widetilde{n}}\Big |_L \right) \!=\! \frac{1}{2\sqrt{\widetilde{T}}} \left[ \frac{(\alpha \widetilde{\ell } \!+\! 1)^2}{\widetilde{\ell }} \!+\! \widetilde{n} \frac{\alpha ^2 \widetilde{\ell }^2 \!-\! 1}{\widetilde{\ell }^2} \frac{\partial \widetilde{\ell }}{\partial \widetilde{n}} \right] ,\end{aligned}$$
(81)
$$\begin{aligned}&\frac{\partial \widetilde{\kappa }}{\partial \widetilde{T}}\Big |_L \!=\! \frac{1}{2\sqrt{\widetilde{T}_L}} \widetilde{n} \frac{(\alpha \widetilde{\ell } \!+\! 1)^2}{\widetilde{\ell }}, \qquad \end{aligned}$$
(82)
$$\begin{aligned}&\frac{\partial }{\partial \widetilde{y}} \left( \frac{\partial \widetilde{\kappa }}{\partial \widetilde{T}}\Big |_L \right) \!=\! \frac{\partial }{\partial \widetilde{n}} \left( \frac{\partial \widetilde{\kappa }}{\partial \widetilde{T}}\Big |_L \right) \frac{\partial \widetilde{n}}{\partial \widetilde{y}} \!+\! \frac{\partial }{\partial \widetilde{T}} \left( \frac{\partial \widetilde{\kappa }}{\partial \widetilde{T}}\Big |_L \right) \frac{\partial \widetilde{T}}{\partial \widetilde{y}},\qquad \end{aligned}$$
(83)
$$\begin{aligned}&\frac{\partial }{\partial \widetilde{n}} \left( \frac{\partial \widetilde{\kappa }}{\partial \widetilde{T}}\Big |_L \right) \!=\! \frac{1}{2\sqrt{\widetilde{T}}} \left[ \frac{(\alpha \widetilde{\ell } \!+\! 1)^2}{\widetilde{\ell }} \!+\! \widetilde{n} \frac{\alpha ^2\widetilde{\ell }^2 - 1}{\widetilde{\ell }^2} \frac{\partial \widetilde{\ell }}{\partial \widetilde{n}} \right] ,\end{aligned}$$
(84)
$$\begin{aligned}&\frac{\partial }{\partial \widetilde{T}} \left( \frac{\partial \widetilde{\kappa }}{\partial \widetilde{T}}\Big |_L \right) = - \frac{1}{4\widetilde{T}\sqrt{\widetilde{T}}} \widetilde{n} \frac{(\alpha \widetilde{\ell } + 1)^2}{\widetilde{\ell }}. \end{aligned}$$
(85)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshuis, P., van der Weele, K., Alam, M. et al. Buoyancy driven convection in vertically shaken granular matter: experiment, numerics, and theory. Granular Matter 15, 893–911 (2013). https://doi.org/10.1007/s10035-013-0440-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0440-x

Keywords

Navigation