Skip to main content

Advertisement

Log in

Air invasion in a granular layer immersed in a fluid: morphology and dynamics

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We investigate the morphology and dynamics of the region invaded by air injected at the bottom of an immersed granular bed. Previous experimental results point out the formation of a fluidized zone with a parabolic shape which does not depend, in the stationary regime, on the injection flow-rate. By tilting the experiment, we can tune the effective gravity in the system. We show that it does not affect significantly the morphology either. A numerical study made it possible to access the typical height and width of the structure, which are governed by the relative effects of gravity and capillarity. After a brief review on this subject, we propose first, new experimental observations on the air invasion regimes and on the morphology of the fluidized zone, in particular its growth dynamics; then, we complement the previous numerical study by considering the influence of the bottom boundary condition. In particular, we quantify the morphology of the invaded region when the gas is injected in the bulk, thus when air is likely to propagate downwards. These results are of practical importance in the prediction of the morphology of gas invasion in soils, from \(\hbox {CO}_2\) sequestration to pollutant propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mörz, T., Karlik, E.A., Kreiter, S., Kopf, A.: An experimental setup for fluid venting in unconsolidated sediments: new insights to fluid mechanics and structures. Sediment. Geol. 196, 251–267 (2007)

    Article  ADS  Google Scholar 

  2. Naudts, L., Greinert, J., Artemov, Y., Beaubien, S.E., Borowski, C., De Batist, M.: Anomalous sea-floor backscatter patterns in methane venting areas, Dnepr paleo-delta, NW Black Sea. Mar. Geol. 251, 253–267 (2008)

    Article  Google Scholar 

  3. Semer, R., Adams, J.A., Reddy, K.R.: An experimental investigation of air flow patterns in saturated soils during air sparging. Geotech. Geol. Eng. 16, 59–75 (1998)

    Article  Google Scholar 

  4. Nermoen, A., Galland, O., Jettestuen, E., Fristad, K., Podladchikov, Y., Svensen, H., Malthe-Sørenssen, A.: Experimental and analytic modeling of piercement structures. J. Geophys. Res. 115, B10202 (2010)

    Article  ADS  Google Scholar 

  5. Walters, A.L., Phillips, J., Brown, R.J., Field, M., Gernon, T., Stripp, G., Sparks, R.S.J.: The role of fluidisation in the formation of volcaniclastic kimberlite: grain size observations and experimental investigation. J. Volcanol. Geotherm. Res. 155, 119–137 (2006)

    Article  ADS  Google Scholar 

  6. Planke, S., Svensen, H., Hovland, M., Banks, D.A., Jamtveit, B.: Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo. Mar. Lett. 23, 258–268 (2003)

    Article  ADS  Google Scholar 

  7. Svensen, H., Jamtveit, B., Planke, S., Chevallier, L.: Structure and evolution of hydrothermal vent complexes in the Karoo basin, South Africa. J. Geol. Soc. 163, 671–682 (2006)

    Article  Google Scholar 

  8. Hovland, M., Talbot, M., Qvale, H., Olaussen, S., Aasberg, L.: Methane-related carbonate cements in pockmarks of the North Sea. J. Sediment. Petrol. 88, 881–892 (1987)

    Google Scholar 

  9. Wilhelm, T., Wilmański, K.: On the onset of flow instabilities in granular media due to porosity inhomogeneities. Int. J. Multiphase Flow 28, 1929–1944 (2002)

    Article  MATH  Google Scholar 

  10. Rigord, P., Guarino, A., Vidal, V., Géminard, J.-C.: Localized instability of a granular layer submitted to an ascending liquid flow. Gran. Matt. 7, 191–197 (2005)

    Article  Google Scholar 

  11. Zoueshtiagh, F., Merlen, A.: Effects of a vertically flowing water jet underneath a granular bed. Phys. Rev. E 75, 056313 (2007)

    Article  ADS  Google Scholar 

  12. Eden, M.: A two-dimensional growth process, 4th Berkeley Symposium, pp. 223–239. University of California Press, Berkeley (1961)

  13. Vold, M.J.: Computer simulation of floc formation in a colloidal suspension. J. Colloid Sci. 18, 684–695 (1963)

    Article  Google Scholar 

  14. Sutherland, D.N.: Comment on Vold’s simulation of floc formation. J. Colloid Interface Sci. 22, 300–302 (1966)

    Article  Google Scholar 

  15. Witten, Jr. T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    Google Scholar 

  16. Meakin, P.: The Vold-Sutherland and Eden models of cluster formation. J. Colloid Interface Sci. 96, 415–424 (1983)

    Article  Google Scholar 

  17. Martín, H., Vannimenus, J., Nadal, J.P.: From invasion to Eden growth: a family of models for cluster growth in a random environment. Phys. Rev. A 30, 3205–3213 (1984)

    Article  ADS  Google Scholar 

  18. Chaouche, M., Rakotomalala, N., Salin, D., Xu, B., Yortsos, Y.C.: Invasion percolation in a hydrostatic or permeability gradient: experiments and simulations. Phys. Rev. E 49, 4133–4139 (1994)

    Article  ADS  Google Scholar 

  19. Birovljev, A., Furuberg, L., Feder, J., Jøssang, T., Måløy, K.J., Aharony, A.: Gravity invasion percolation in two dimensions: experiments and simulation. Phys. Rev. Lett. 67, 584–587 (1991)

    Article  ADS  Google Scholar 

  20. Meakin, P., Feder, J., Frette, V., Jøssang, T.: Invasion percolation in a destabilizing gradient. Phys. Rev. A 46, 3357–3368 (1992)

    Article  ADS  Google Scholar 

  21. Bo, Z., Loggia, D., Xiaorong, L., Vasseur, G., Ping, H.: Numerical studies of gravity destabilized percolation in 2D porous media. Eur. Phys. J. B 50, 631–637 (2006)

    Article  ADS  Google Scholar 

  22. Chevalier, C., Lindner, A., Leroux, M., Clément, E.: Morphodynamics during air injection into a confined granular suspension. J. Non-Newton. Fluid Mech. 158, 63–72 (2009)

    Article  MATH  Google Scholar 

  23. Sandnes, B., Flekkøy, E.G., Knudsen, H.A., Måløy, K.J., See, H.: Patterns and flow in frictional fluid dynamics. Nat. Commun. 2, 288–296 (2011)

    Article  ADS  Google Scholar 

  24. Varas, G., Vidal, V., Géminard, J.-C.: Venting dynamics of an immersed granular layer. Phys. Rev. E 83, 011302 (2011)

    Article  ADS  Google Scholar 

  25. Varas, G., Vidal, V., Géminard, J.-C.: Morphology of air invasion in an immersed granular layer. Phys. Rev. E 83, 061302 (2011)

    Article  ADS  Google Scholar 

  26. Lake, W.L.: Enhanced Oil Recovery. Prentice Hall, New Jersey (1989)

    Google Scholar 

  27. Eccles, J.K., Pratson, L., Newell, R.G., Jackson, R.B.: Physical and economic potential of geological CO\(_2\) storage in saline aquifers. Environ. Sci. Technol. 43, 1962–1969 (2009)

    Article  ADS  Google Scholar 

  28. Romanov, V.N., Ackman, T.E., Soong, Y., Kleinman, R.L.: \(\text{ CO }_2\) storage in shallow underground and surface coal mines: challenges and opportunities. Environ. Sci. Technol. 43, 561–564 (2009)

    Article  ADS  Google Scholar 

  29. Kang, Q., Tsimpanogiannis, I.N., Zhang, D., Lichtner, P.C.: Numerical modeling of pore-scale phenomena during \(\text{ CO }_2\) sequestration in oceanic sediments. Fuel Process. Technol. 86, 1647–1665 (2005)

    Article  Google Scholar 

  30. Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eldem, T.R., Rey, S.: Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004)

    Article  ADS  Google Scholar 

  31. Kong, X.-Z., Kinzelbach, W., Stauffer, F.: Morphodynamics during air injection into water-saturated movable spherical granulates. Chem. Eng. Sci. 65, 4652–46660 (2010)

    Google Scholar 

  32. Melo, F., Vivanco, F., Fuentes, C., Apablaza, V.: On drawbody shapes: from BergmarkRoos to kinematic models. Int. J. Rock Mech. Mining Sci. 44, 77–86 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Vidal.

Additional information

G. V. acknowledges a grant by CONICYT (Comisión Nacional de Investigación Científica y Tecnológica, Gobierno de Chile) and financial support from FONDECYT Project No.11121300.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varas, G., Géminard, JC. & Vidal, V. Air invasion in a granular layer immersed in a fluid: morphology and dynamics. Granular Matter 15, 801–810 (2013). https://doi.org/10.1007/s10035-013-0435-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0435-7

Keywords

Navigation