Skip to main content
Log in

Numerical Simulation of Gas Injection in Vertical Water Saturated Porous Media

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

We present numerical simulations of drainage induced by air injection in a vertical water-saturated Hele-Shaw cell filled with glass microbeads. We use the macroscale Subsurface Transport Over Multiple Phases (STOMP) simulator developed by the Pacific Northwest National Laboratory’s Hydrology Group. To trigger fingering, we use random permeability fields consistent to capillary entry pressure fields. We compare the numerical results to our own experimental results shown in a previous study. We analyze the effects of the microheterogeneity degree as well as the macroscopic parameters on the gas saturation results. The main objective of the work is to investigate how microscopic effects could be accounted for by macroscopic variables during drainage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  1. Islam, A., Chevalier, S., Ben Salem, I., Bernabe, Y., Juanes, R., & Sassi, M. (2014). Characterization of the crossover from capillary invasion to viscous fingering to fracturing during drainage in a vertical 2D porous medium. International Journal of Multiphase Flow., 58, 279–291.

    Article  CAS  Google Scholar 

  2. Saffman, P. T. & Taylor, G. I. (1958). The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. Royal Society London, 245, 312–329.

  3. Aker, E., Maloy, K. J., Hansen, A., & Batrouni, G. G. (1998). A two-dimensional network simulator for two-phase flow in porous media. Transport in Porous Media., 32, 163–186.

    Article  Google Scholar 

  4. Lovoll, G., Meheust, Y., Maloy, K. J., Aker, E., & Schmittbuhl, J. (2005). Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore study. Energy, 30, 861–872.

    Article  Google Scholar 

  5. Ferer, M., Ji, C., Bromhal, G. S., Cook, J., Ahmadi, G., & Smith, D. H. (2004). Crossover from capillatry fingering to viscous fingering for immiscible unstable flow: Experiment and modeling. Physical Review E., 70(016303), 1–7.

    Google Scholar 

  6. Holtzman, R., & Juanes, R. (2010). Crossover from fingering to fracturing in deformable disordered media. American Physical Society Physical Review E, 82(4), 046305.

  7. Hilpert, M., & Miller, C. T. (2001). Pore-morphology-based simulation of drainage in totally wetting porous media. Advances in Water Resources., 24, 243–255.

    Article  Google Scholar 

  8. Lehmann, P., Wyss, P., Flisch, A., Lehmann, E., Vontobel, P., Krafczyk, M., Kaestner, A., Beckmann, F., Gygi, A., & Fluhler, H. (2006). Tomographical imaging and mathematical description of porous medianused for the prediction of fluid distribution. Vadose Zone Journal., 5, 80–97.

    Article  Google Scholar 

  9. Cense, A. & Berg, S. (2009). The viscous-capillary paradox in 2-phase flow in porous media. Paper SCA2009-13 presented at 23rd Annual Technical Symposium of the Society of Core Analysts, Noordwijk, The Netherlands.

  10. Garcia JE & Karsten P. (2003). Flow instabilities during injection of CO2 into saline aquifers, in TOUGH Symposium, Berkeley, California.

  11. Saadatpoor, E., Bryant, S. L., & Sepehrnoori, K. (2010). New trapping mechanism in carbon sequestration. Transport in Porous Media., 82, 3–17.

    Article  CAS  Google Scholar 

  12. Ataie-Ashtiani, B., Hassanizadeh, S. M., & Celia, M. A. (2002). Effects of heterogeneities on capillary pressure-saturation-relative permeability relationships. Journal of Contaminant Hydrology., 56, 175–192.

    Article  CAS  Google Scholar 

  13. Das, D. D., Mirzaei, M., & Widdows, N. (2006). Non-uniqueness in capillary pressure-saturationrelative permeability relationships for two-phase flow in porous media: Interplay between intensity and distribution of random micro-heterogeneities. Chemical Engineering Science., 61, 6786–6803.

    Article  CAS  Google Scholar 

  14. White, M. & Oostrom, M. x(2000) STOMP Subsurface Transport Over Multiple Phases: theory guide, PNNL-12030. Pacific Northwest National Laboratory (stomp. pnnl.gov), Richland, Washington.

  15. Hilfer, R., & Helmig, R. (2004). Dimensional analysis and upscaling of two-phase flow in porous media with piecewise constant heterogeneities. Advances in Water Resources., 27, 1033–1040.

    Article  Google Scholar 

  16. White, M., Watson, D., Bacon, D., White, S., McGrail, B., & Zhang, Z. (2012) STOMP, Subsurface Transport Over Multiphases, STOMP-CO2 and -CO2e Guide, PNNL 21268, U.S. Department of Energy (stomp. pnnl.gov), Richland, Washington.

  17. Lovoll, G., Jankov, M., Maloy, K., Toussaint, R., Schmittbuhl, J., Schafer, G., & Meheust, Y. (2011). Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Transport in Porous Media., 86, 305–324.

    Article  CAS  Google Scholar 

  18. Laroussi, C., & De Backer, L. (1979). Relations between geometrical properties of glass beads media and hysteresis loops. Soil Science Society American Journal., 43, 646–650.

    Article  Google Scholar 

  19. Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research., 12(3), 513–522.

    Article  Google Scholar 

  20. Springer, D. S., Loaiciga, H. A., Cullen, S. J., & Everett, L. G. (1998). Air permeability of porous materials under controlled laboratory conditions. Ground Water, 36(4), 558–565.

    Article  CAS  Google Scholar 

  21. Cropper, S., Perfect, E., Van den Berg, E., & Mayes, M. (2011). Comparison of average and point capillary pressure-saturation functions determined by steady-state centrifugation. Soil Physics., 75, 17–25.

    CAS  Google Scholar 

  22. Suekane, T. & Okada, K. (). Gas injection in a water saturated porous medium: effect of capillary, buoyancy, and viscosity ratio, in International Conference on Greenhouse Gas Control Technologies-11, Kyoto.

  23. Rasband, W. S. [Online], ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. Available: https://imagej.nih.gov/ij/. Accessed 01 2015.

  24. "Tecplot", Tecplot, Inc. Available: http://www.tecplot.com/. Accessed May 2015.

  25. Hassanizadeh, S. M., Celia, M. A., & Dahle, H. K. (2002). Dynamic effect in the capillary pressure-saturation relationship and its impacts on unsaturated flow. Vadose Zone Journal., 1, 38–57.

    Article  Google Scholar 

  26. Manthey, S., Hassanizadeh, S. M., Helmig, R., & Hilfer, R. (2008). Dimensional analysis of twophase flow including a rate-dependent capillary pressure-saturation relationship. Advances in Water Resources, 31, 1137–1150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, A., Chevalier, S., Salem, I.B. et al. Numerical Simulation of Gas Injection in Vertical Water Saturated Porous Media. Environ Model Assess 23, 459–469 (2018). https://doi.org/10.1007/s10666-017-9587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-017-9587-x

Keywords

Navigation