Skip to main content
Log in

A micro–macro investigation of the capillary strengthening effect in wet granular materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Wet granular materials are three-dimensionally simulated by the discrete element method with water bridges incorporated between particles. The water bridges are simplified as toroidal shapes, and the matric suction is constantly maintained in the material. A comparison with experimental tests in the literature indicates that the toroidal shape approximation may be one of the best choices with high practicability and decent accuracy. Mechanical behaviours of wet granular materials are studied by triaxial tests. Effects of particle size distributions and void ratios are investigated systematically in this study. The hydraulic limit of the pendular state is also discussed. It gives the capillary cohesion function which is not only determined by the degree of saturation but also positively correlated to relative density and particle size polydispersity and inversely proportional to mean particle size. Furthermore, the capillary strengthening effect is also analysed microscopically in aid of the Stress–Force–Fabric relationship, mainly in fabric anisotropy, coordination number and stress transmission pattern, which revealed the micro-mechanisms of the additional effective stress induced by capillary effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Alonso EE, Pereira JM, Vaunat J, Olivella S (2010) A microstructurally based effective stress for unsaturated soils. Géotechnique 60(12):913–925. https://doi.org/10.1680/geot.8.P.002

    Article  Google Scholar 

  2. Bishop AW, Blight GE (1963) Some aspects of effective stress in saturated and partly saturated soils. Géotechnique 13(3):177–197. https://doi.org/10.1680/geot.1963.13.3.177

    Article  Google Scholar 

  3. Chalak C, Chareyre B, Nikooee E, Darve F (2016) Partially saturated media: from DEM simulation to thermodynamic interpretation. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2016.1164087

  4. Chareyre B, Scholtes L, Darve F, Nakagawa M, Luding S (2009) Micro-statics and micro-kinematics of capillary phenomena in dense granular materials. AIP Conf Proc 3:927–930. https://doi.org/10.1063/1.3180083

    Article  Google Scholar 

  5. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  6. Duriez J, Wan R (2016) Contact angle mechanical influence in wet granular soils. Acta Geotechnica. https://doi.org/10.1007/s11440-016-0500-6

  7. El Shamy U, Gröger T (2008) Micromechanical aspects of the shear strength of wet granular soils. Int J Numer Anal Methods Geomech 32(14):1763–1790. https://doi.org/10.1002/nag.695

    Article  MATH  Google Scholar 

  8. Fisher RA (1926) On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines. J Agric Sci 16(03):492. https://doi.org/10.1017/S0021859600007838

    Article  Google Scholar 

  9. Gabrieli F, Lambert P, Cola S, Calvetti F (2012) Micromechanical modelling of erosion due to evaporation in a partially wet granular slope. Int J Numer Anal Methods Geomech 36(7):918–943. https://doi.org/10.1002/nag.1038

    Article  Google Scholar 

  10. Gili JA, Alonso EE (2002) Microstructural deformation mechanisms of unsaturated granular soils. Int J Numer Anal Methods Geomech 26(5):433–468. https://doi.org/10.1002/nag.206

    Article  MATH  Google Scholar 

  11. Gladkyy A, Schwarze R (2014) Comparison of different capillary bridge models for application in the discrete element method. Granul Matter 16(6):911–920. https://doi.org/10.1007/s10035-014-0527-z

    Article  Google Scholar 

  12. Gras JP, Delenne JY, Soulié F, El Youssoufi M (2011) DEM and experimental analysis of the water retention curve in polydisperse granular media. Powder Technol 208(2):296–300. https://doi.org/10.1016/j.powtec.2010.08.019

    Article  Google Scholar 

  13. Gras JP, Delenne JY, El Youssoufi MS (2013) Study of capillary interaction between two grains: a new experimental device with suction control. Granul Matter 15(1):49–56. https://doi.org/10.1007/s10035-012-0388-2

    Article  Google Scholar 

  14. Guo P (2014) Coupled effects of capillary suction and fabric on the strength of moist granular materials. Acta Mech 225(8):2261–2275. https://doi.org/10.1007/s00707-014-1124-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Haines WB (1925) Studies in the physical properties of soils: II. A note on the cohesion developed by capillary forces in an ideal soil. J Agric Sci 15:529–535. https://doi.org/10.1017/S0021859600082460

    Article  Google Scholar 

  16. Haines WB (1930) Studies in the physical properties of soil: V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J Agric Sci 20(01):97–116. https://doi.org/10.1017/S002185960008864X

    Article  Google Scholar 

  17. Harireche O, Faramarzi A, Alani AM (2015) Prediction of inter-particle capillary forces for non-perfectly wettable granular assemblies. Granul Matter 17(5):537–543. https://doi.org/10.1007/s10035-015-0581-1

    Article  Google Scholar 

  18. Hertz H (1882) Über die berührung fester elastischer körper. J für die Reine und Angewandte Mathematik 92:156–171

    MATH  Google Scholar 

  19. Hornbaker DJ, Albert R, Albert I, Barabási AL, Schiffer P (1997) What keeps sandcastles standing? Nature 387(6635):765–765. https://doi.org/10.1038/42831

    Article  Google Scholar 

  20. Hotta K, Takeda K, Iinoya K (1974) The capillary binding force of a liquid bridge. Powder Technol 10(4–5):231–242. https://doi.org/10.1016/0032-5910(74)85047-3

    Article  Google Scholar 

  21. Jiang MJ, Leroueil S, Konrad JM (2004) Insight into shear strength functions of unsaturated granulates by DEM analyses. Comput Geotech 31(6):473–489. https://doi.org/10.1016/j.compgeo.2004.07.001

    Article  Google Scholar 

  22. Khaddour G (2015) Multi-scale characterisation of the hydro-mechanical behaviour of unsaturated sand: water retention and triaxial response. PhD thesis, Université Grenoble Alpes, France

  23. Kim TH, Hwang C (2003) Modeling of tensile strength on moist granular earth material at low water content. Eng Geol 69(3–4):233–244. https://doi.org/10.1016/S0013-7952(02)00284-3

    Article  Google Scholar 

  24. Kim TH, Sture S (2008) Capillary-induced tensile strength in unsaturated sands. Can Geotech J 45(5):726–737. https://doi.org/10.1139/T08-017

    Article  Google Scholar 

  25. Kloss C, Goniva C, Hager A (2012) Models, algorithms and validation for opensource DEM and CFDDEM. Prog Comput Fluid Dyn Int J 12(2):140–152

    Article  Google Scholar 

  26. Li X, Yu HS (2013) On the stress–force–fabric relationship for granular materials. Int J Solids Struct 50(9):1285–1302. https://doi.org/10.1016/j.ijsolstr.2012.12.023

    Article  Google Scholar 

  27. Li X, Yu HS (2014) Fabric, force and strength anisotropies in granular materials: a micromechanical insight. Acta Mech 225(8):2345–2362. https://doi.org/10.1007/s00707-014-1120-6

    Article  MATH  Google Scholar 

  28. Lian G, Thornton C, Adams MJ (1993) A theoretical study of the liquid bridge forces between two rigid spherical bodies. J Colloid Interface Sci 161(1):138–147. https://doi.org/10.1006/jcis.1993.1452

    Article  Google Scholar 

  29. Liu S, Sun D, Wang Y (2003) Numerical study of soil collapse behavior by discrete element modelling. Comput Geotech 30(5):399–408. https://doi.org/10.1016/S0266-352X(03)00016-8

    Article  Google Scholar 

  30. Lourenço S, Gallipoli D, Augarde C, Toll D, Fisher P, Congreve A (2012) Formation and evolution of water menisci in unsaturated granular media. Géotechnique 62(3):193–199. https://doi.org/10.1680/geot.11.P.034

    Article  Google Scholar 

  31. Lu N, Wu B, Tan CP (2007) Tensile strength characteristics of unsaturated sands. J Geotech Geoenviron Eng 133(2):144–154. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(144)

    Article  Google Scholar 

  32. Lu N, Kim TH, Sture S, Likos WJ (2009) Tensile strength of unsaturated sand. J Eng Mech 135(12):1410–1419. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000054

    Article  Google Scholar 

  33. Lu N, Godt JW, Wu DT (2010) A closed-form equation for effective stress in unsaturated soil. Water Resources Res 46(5):W05,515. https://doi.org/10.1029/2009WR008646

    Article  Google Scholar 

  34. Manahiloh K, Muhunthan B (2012) Characterizing liquid phase fabric of unsaturated specimens from X-ray computed tomography images. In: Mancuso C, Jommi C, D’Onza F (eds) Unsaturated soils: research and applications. Springer, Berlin, pp 71–80

    Chapter  Google Scholar 

  35. Mason G, Clark W (1965) Liquid bridges between spheres. Chem Eng Sci 20(10):859–866. https://doi.org/10.1016/0009-2509(65)80082-3

    Article  Google Scholar 

  36. Melnikov K, Wittel FK, Herrmann HJ (2016) Micro-mechanical failure analysis of wet granular matter. Acta Geotech 11(3):539–548. https://doi.org/10.1007/s11440-016-0465-5

    Article  Google Scholar 

  37. Mindlin R (1949) Compliance of elastic bodies in contact. J Appl Mech 16:259–268

    MathSciNet  MATH  Google Scholar 

  38. Mitarai N, Nori F (2006) Wet granular materials. Adv Phys 55(1–2):1–45. https://doi.org/10.1080/00018730600626065

    Article  Google Scholar 

  39. Moscariello M, Cuomo S, Salager S (2017) Capillary collapse of loose pyroclastic unsaturated sands characterized at grain scale. Acta Geotech. https://doi.org/10.1007/s11440-017-0603-8

    Google Scholar 

  40. Newitt D, Conway-Jones J (1958) A contribution to the theory and practice of granulation. Trans Inst Chem Eng 36:422

    Google Scholar 

  41. Pierrat P, Caram HS (1997) Tensile strength of wet granula materials. Powder Technol 91(2):83–93. https://doi.org/10.1016/S0032-5910(96)03179-8

    Article  Google Scholar 

  42. Richefeu V, El Youssoufi M, Radjaï F (2006) Shear strength properties of wet granular materials. Phys Rev E 73(5):051,304. https://doi.org/10.1103/PhysRevE.73.051304

    Article  Google Scholar 

  43. Richefeu V, El Youssoufi MS, Peyroux R, Radjaï F (2008) A model of capillary cohesion for numerical simulations of 3D polydisperse granular media. Int J Numer Anal Methods Geomech 32(11):1365–1383. https://doi.org/10.1002/nag.674

    Article  MATH  Google Scholar 

  44. Rose W (1958) Volumes and surface areas of pendular rings. J Appl Phys 29(4):687. https://doi.org/10.1063/1.1723251

    Article  Google Scholar 

  45. Rothenburg L, Bathurst RJ (1989) Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4):601–614. https://doi.org/10.1680/geot.1989.39.4.601

    Article  Google Scholar 

  46. Scheel M, Seemann R, Brinkmann M, Di Michiel M, Sheppard A, Breidenbach B, Herminghaus S (2008) Morphological clues to wet granular pile stability. Nat Mater 7(3):189–193. https://doi.org/10.1038/nmat2117

    Article  Google Scholar 

  47. Scholtès L, Chareyre B, Nicot F, Darve F (2009a) Micromechanics of granular materials with capillary effects. Int J Eng Sci 47(1):64–75. https://doi.org/10.1016/j.ijengsci.2008.07.002

    Article  MathSciNet  MATH  Google Scholar 

  48. Scholtès L, Hicher P, Nicot F, Chareyre B, Darve F (2009b) On the capillary stress tensor in wet granular materials. Int J Numer Anal Methods Geomech 33(10):1289–1313. https://doi.org/10.1002/nag.767

    Article  MATH  Google Scholar 

  49. Schubert H (1975) Tensile strength of agglomerates. Powder Technol 11(2):107–119. https://doi.org/10.1016/0032-5910(75)80036-2

    Article  Google Scholar 

  50. Semprebon C, Scheel M, Herminghaus S, Seemann R, Brinkmann M (2016) Liquid morphologies and capillary forces between three spherical beads. Phys Rev E 94(1):012,907. https://doi.org/10.1103/PhysRevE.94.012907

    Article  Google Scholar 

  51. Soulié F, Cherblanc F, El Youssoufi M, Saix C (2006a) Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Int J Numer Anal Meth Geomech 30(3):213–228. https://doi.org/10.1002/nag.476

    Article  MATH  Google Scholar 

  52. Soulié F, El Youssoufi MS, Cherblanc F, Saix C (2006b) Capillary cohesion and mechanical strength of polydisperse granular materials. The Eur Phys J E Soft Matter 21(4):349–357. https://doi.org/10.1140/epje/i2006-10076-2

    Article  MATH  Google Scholar 

  53. Turner G, Balasubramanian M, Otten L (1976) The tensile strength of moist limestone powder. Measurements by different apparatuses. Powder Technol 15(1):97–105. https://doi.org/10.1016/0032-5910(76)80034-4

    Article  Google Scholar 

  54. Voivret C, Radjaï F, Delenne J, El Youssoufi MS (2007) Space-filling properties of polydisperse granular media. Phys Rev E 76(2):021,301. https://doi.org/10.1103/PhysRevE.76.021301

    Article  Google Scholar 

  55. Voivret C, Radjaï F, Delenne J, El Youssoufi M (2009) Multiscale force networks in highly polydisperse granular media. Phys Rev Lett 102(17):178,001. https://doi.org/10.1103/PhysRevLett.102.178001

    Article  MATH  Google Scholar 

  56. Wan R, Duriez J, Darve F (2015) A tensorial description of stresses in triphasic granular materials with interfaces. Geomech Energy Environ 4:73–87. https://doi.org/10.1016/j.gete.2015.11.004

    Article  Google Scholar 

  57. Wang JP (2015) Discrete element modelling and micromechanics of pendular state unsaturated granular materials. PhD thesis, University of Nottingham, UK

  58. Wang JP, Li X, Yu HS (2015) A micromechanical interpretation of the capillary effect of unsaturated granular material in a pendular state. In: Proceedings of the 14th international conference of international association for computer methods and recent advances in geomechanics computer methods and recent advances in geomechanics, IACMAG 2014, Taylor and Francis, Balkema, pp 1563–1568

  59. Wang JP, François B, Lambert P (2017a) Equations for hydraulic conductivity estimation from particle size distribution: a dimensional analysis. Water Resour Res 53(9):8127–8134. https://doi.org/10.1002/2017WR020888

    Article  Google Scholar 

  60. Wang JP, Gallo E, François B, Gabrieli F, Lambert P (2017b) Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technol 305:89–98. https://doi.org/10.1016/j.powtec.2016.09.060

    Article  Google Scholar 

  61. Wang JP, Hu N, François B, Lambert P (2017c) Estimating water retention curves and strength properties of unsaturated sandy soils from basic soil gradation parameters. Water Resour Res 53(7):6069–6088. https://doi.org/10.1002/2017WR020411

    Article  Google Scholar 

  62. Wang JP, Li X, Yu HS (2017d) Stress–force–fabric relationship for unsaturated granular materials in pendular states. J Eng Mech 143(9):04017,068. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001283

    Article  Google Scholar 

  63. Yang H, Rahardjo H, Leong EC, Fredlund DG (2004) Factors affecting drying and wetting soil-water characteristic curves of sandy soils. Can Geotech J 41(5):908–920. https://doi.org/10.1139/t04-042

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Peng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JP., Li, X. & Yu, HS. A micro–macro investigation of the capillary strengthening effect in wet granular materials. Acta Geotech. 13, 513–533 (2018). https://doi.org/10.1007/s11440-017-0619-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0619-0

Keywords

Navigation