Skip to main content
Log in

Sirolimus-coated, poly(l-lactic acid)-modified polypropylene mesh with minimal intra-peritoneal adhesion formation in a rat model

  • Original Article
  • Published:
Hernia Aims and scope Submit manuscript

Abstract

Purpose

This study evaluated the manufacturing method and anti-adhesion properties of a new composite mesh in the rat model, which was made from sirolimus (SRL) grafts on a poly(l-lactic acid) (PLLA)-modified polypropylene (PP) hernia mesh.

Methods

PLLA was first grafted onto argon-plasma-treated native PP mesh through catalysis of stannous chloride. SRL was grafted onto the surface of PP-PLLA meshes using catalysis of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 4-dimethylaminopyridine (DMAP) in a CH2Cl2 solvent. Sprague–Dawley female rats received either SRL-coated meshes, PP-PLLA meshes, or native PP meshes to repair abdominal wall defects. At different intervals, rats were euthanized by a lethal dose of chloral hydrate and adhesion area and tenacity were evaluated. Sections of the mesh with adjacent tissues were assessed histologically.

Results

Attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy indicated the existence of a C=O group absorption peak (1724.1 cm−1), and scanning electron microscope morphological analysis indicated that the surface of the PP mesh was covered with SRL. Compared to the native PP meshes and PP-PLLA meshes, SRL-coated meshes demonstrated the greatest ability to decrease the formation of adhesions (P < 0.05) and inflammation.

Conclusions

The SRL-coated composite mesh showed minimal formation of intra-abdominal adhesions in a rat model of abdominal wall defect repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bosanquet DC, Ansell J, Abdelrahman T, Cornish J, Harries R, Stimpson A, Davies L, Glasbey JC, Frewer KA, Frewer NC, Russell D, Russell I, Torkington J (2015) Systematic review and meta-regression of factors affecting midline incisional hernia rates: analysis of 14,618 patients. PLoS One 10(9):e0138745. https://doi.org/10.1371/journal.pone.0138745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zinther NB, Wara P, Friis-Andersen H (2010) Intraperitoneal onlay mesh: an experimental study of adhesion formation in a sheep model. Hernia J Hernias Abdom Wall Surg 14(3):283–289. https://doi.org/10.1007/s10029-009-0622-y

    Article  CAS  Google Scholar 

  3. Jamry A, Jalynski M, Piskorz L, Brocki M (2013) Assessment of adhesion formation after laparoscopic intraperitoneal implantation of Dynamesh IPOM mesh. Arch Med Sci AMS 9(3):487–492. https://doi.org/10.5114/aoms.2013.35345

    Article  PubMed  Google Scholar 

  4. Muysoms FE, Bontinck J, Pletinckx P (2011) Complications of mesh devices for intraperitoneal umbilical hernia repair: a word of caution. Hernia J Hernias Abdom Wall Surg 15(4):463–468. https://doi.org/10.1007/s10029-010-0692-x

    Article  CAS  Google Scholar 

  5. Shankaran V, Weber DJ, Reed RL 2nd, Luchette FA (2011) A review of available prosthetics for ventral hernia repair. Ann Surg 253(1):16–26. https://doi.org/10.1097/SLA.0b013e3181f9b6e6

    Article  PubMed  Google Scholar 

  6. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100. https://doi.org/10.1016/j.smim.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  7. Poppas DP, Sung JJ, Magro CM, Chen J, Toyohara JP, Ramshaw BJ, Felsen D (2016) Hydrogel coated mesh decreases tissue reaction resulting from polypropylene mesh implant: implication in hernia repair. Hernia J Hernias Abdom Wall Surg 20(4):623–632. https://doi.org/10.1007/s10029-016-1481-y

    Article  CAS  Google Scholar 

  8. Deeken CR, Faucher KM, Matthews BD (2012) A review of the composition, characteristics, and effectiveness of barrier mesh prostheses utilized for laparoscopic ventral hernia repair. Surg Endosc 26(2):566–575. https://doi.org/10.1007/s00464-011-1899-3

    Article  PubMed  Google Scholar 

  9. Practice Committee of the American Society for Reproductive Medicine (2006) Control and prevention of peritoneal adhesions in gynecologic surgery. Fertil Steril 86(5 Suppl 1):S1–S5. https://doi.org/10.1016/j.fertnstert.2006.07.1483

    Article  Google Scholar 

  10. Langer JC, Liebman SM, Monk PK, Pelletier GJ (1995) Mast cell mediators and peritoneal adhesion formation in the rat. J Surg Res 59(3):344–348. https://doi.org/10.1006/jsre.1995.1174

    Article  CAS  PubMed  Google Scholar 

  11. Li L, Zheng X, Fan D, Yu S, Wu D, Fan C, Cui W, Ruan H (2016) Release of celecoxib from a bi-layer biomimetic tendon sheath to prevent tissue adhesion. Mater Sci Eng C Mater Biol Appl 61:220–226. https://doi.org/10.1016/j.msec.2015.12.028

    Article  CAS  PubMed  Google Scholar 

  12. Chisari A, Pistritto AM, Piccolo R, La Manna A, Danzi GB (2016) The ultimaster biodegradable-polymer sirolimus-eluting stent: an updated review of clinical evidence. Int J Mol Sci 17(9):1490. https://doi.org/10.3390/ijms17091490

    Article  CAS  PubMed Central  Google Scholar 

  13. Motse KG, Mashabane MJ (2016) Sirolimus-induced lymphoedema. S Afr Med J Suid-Afrikaanse tydskrif vir geneeskunde 106(9):886–887. https://doi.org/10.7196/SAMJ.2016.v106i9.10636

    Article  PubMed  Google Scholar 

  14. Zhang Z, Zhang T, Li J, Ji Z, Zhou H, Zhou X, Gu N (2014) Preparation of poly(l-lactic acid)-modified polypropylene mesh and its antiadhesion in experimental abdominal wall defect repair. J Biomed Mater Res Part B Appl Biomater 102(1):12–21

    Article  CAS  PubMed  Google Scholar 

  15. Maciver AH, McCall MD, Edgar RL, Thiesen AL, Bigam DL, Churchill TA, Shapiro AM (2011) Sirolimus drug-eluting, hydrogel-impregnated polypropylene mesh reduces intra-abdominal adhesion formation in a mouse model. Surgery 150(5):907–915. https://doi.org/10.1016/j.surg.2011.06.022

    Article  PubMed  Google Scholar 

  16. Gomathi N, Neogi S (2013) Surface modification of polypropylene using argon plasma: statistical optimization of the process variables. Appl Surf Sci 51(6):1273–1278

    Google Scholar 

  17. Jayanth ST, Pulimood A, Abraham D, Rajaram A, Paul MJ, Nair A (2015) A randomized controlled experimental study comparing chitosan coated polypropylene mesh and proceed mesh for abdominal wall defect closure. Ann Med Surg 4(4):388–394. https://doi.org/10.1016/j.amsu.2015.10.002

    Article  CAS  Google Scholar 

  18. Zhang L (2015) Incidence of abdominal incisional hernia in developing country: a retrospective cohort study. Int J Clin Exp Med 8(8):13649–13652

    PubMed  PubMed Central  Google Scholar 

  19. Usher FC, Ochsner J, Tuttle LL Jr (1958) Use of marlex mesh in the repair of incisional hernias. Am Surg 24(12):969–974

    CAS  PubMed  Google Scholar 

  20. Vorst AL, Kaoutzanis C, Carbonell AM, Franz MG (2015) Evolution and advances in laparoscopic ventral and incisional hernia repair. World J Gastrointest Surg 7(11):293–305. https://doi.org/10.4240/wjgs.v7.i11.293

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rastegarpour A, Cheung M, Vardhan M, Ibrahim MM, Butler CE, Levinson H (2016) Surgical mesh for ventral incisional hernia repairs: understanding mesh design. Plast Surg (Oakville, Ont) 24(1):41–50

    Article  Google Scholar 

  22. Turza KC, Butler CE (2012) Adhesions and meshes: synthetic versus bioprosthetic. Plast Reconstr Surg 130(5 Suppl 2):206S–213S. https://doi.org/10.1097/PRS.0b013e3182638d48

    Article  CAS  Google Scholar 

  23. Arung W, Drion P, Detry O (2016) Sepramesh and postoperative peritoneal adhesions in a rat model. Acta Chir Belg 116:1–5. https://doi.org/10.1080/00015458.2016.1181322

    Article  Google Scholar 

  24. Guler S, Cimen S, Hu Q, Venkatachalam AB, Alwayn I (2016) Effects of mTOR inhibitors in prevention of abdominal adhesions. J Investig Surg Off J Acad Surg Res 29(5):275–281. https://doi.org/10.3109/08941939.2016.1149643

    Article  Google Scholar 

  25. Skalsky I, Filova E, Szarszoi O, Parizek M, Lytvynets A, Maluskova J, Lodererova A, Brynda E, Lisa V, Burdikova Z, Capek M, Pirk J, Bacakova L (2011) A periadventitial sirolimus-releasing mesh decreased intimal hyperplasia in a rabbit model. Physiol Res 60(3):585–588

    CAS  PubMed  Google Scholar 

  26. Laschke MW, Haufel JM, Roller J, Schorr H, Menger MD (2009) Rapamycin, but not cyclosporine A, inhibits vascularization and incorporation of implanted surgical meshes. Transpl Int Off J Eur Soc Org Transplant 22(6):654–662. https://doi.org/10.1111/j.1432-2277.2009.00841.x

    Article  CAS  Google Scholar 

  27. Scheuerlein H, Rauchfuss F, Gharbi A, Heise M, Settmacher U (2011) Laparoscopic incisional hernia repair after solid-organ transplantation. Transplant Proc 43(5):1783–1789. https://doi.org/10.1016/j.transproceed.2011.03.082

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (2242016k40145) and National Natural Science Foundation of China (81600407).

Funding

This work was financially supported by the Fundamental Research Funds for the Central Universities (2242016k40145) and National Natural Science Foundation of China (81600407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ji.

Ethics declarations

Conflict of interest

Shenglin Lu, Wanjun Hu, Zhigang Zhang, Zhenling Ji, and Tianzhu Zhang declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Human and animal rights

All animal experiments were approved by the Institutional Animal Care and Use Committee of Southeast University and were in compliance with all regulatory guidelines.

Informed consent

For this type of article informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Hu, W., Zhang, Z. et al. Sirolimus-coated, poly(l-lactic acid)-modified polypropylene mesh with minimal intra-peritoneal adhesion formation in a rat model. Hernia 22, 1051–1060 (2018). https://doi.org/10.1007/s10029-018-1782-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10029-018-1782-4

Keywords

Navigation