Skip to main content
Log in

Arbuscular Mycorrhizal Fungi Mediate Grazing Effects on Seasonal Soil Nitrogen Fluxes in a Steppe Ecosystem

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Grazing and arbuscular mycorrhizal fungi (AMF) influence soil nitrogen (N) cycling in grassland ecosystems. However, it remains unclear whether AMF mediate grazing effects on soil N cycling. We investigated the influence of benomyl (a broad-range fungicide) application to suppress AMF on soil N fluxes under different levels of grazing intensity in a steppe ecosystem on the Mongolia plateau. In situ soil core incubation method was used during both growing and non-growing seasons. Benomyl application to suppress AMF remarkably stimulated the net nitrification rate across all grazing intensities during the growing season. Benomyl application exerted a negative effect on soil N fluxes and/or N pools under no to moderate levels of grazing and a positive effect under heavy grazing during the growing season. The responses of amino acid and inorganic N stocks to grazing differed substantially between growing and non-growing seasons. The accumulation of amino acid in grazed plots (especially heavily grazed plots) during the non-growing season enhances the substrate availability for microbes in the early growing season of the following year. Our study provides field evidence that N losses are controlled to some extent by AMF and suggests a mechanism that grazing may affect soil N cycling through changing the AMF-plant symbiosis and therefore the interactions between AMF and other microbes. The findings improve our understanding of the effects of grazing and AMF on seasonal dynamics of different N forms and N pools in semiarid grassland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data Availability

Data are available from the Inner Mongolia Grassland Ecosystem Research Station (IMGERS), Chinese Academy of Sciences (http://nmg.cern.ac.cn/).

References

  • Ba L, Ning J, Wang D, Facelli E, Facelli JM, Yang Y, Zhang L. 2012. The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe. Plant & Soil 352:143–56.

    Article  CAS  Google Scholar 

  • Bai YF, Wu JG, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG. 2007. Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology 44:1023–34.

    Article  Google Scholar 

  • Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG. 2010. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology 16:358–72.

    Article  Google Scholar 

  • Bakker ES, Olff H, Boekhoff M, Gleichman JM, Berendse F. 2004. Impact of herbivores on nitrogen cycling: contrasting effects of small and large species. Oecologia 138:91–101.

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Streeter TC, Bol R. 2003. Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology 84:1277–87.

    Article  Google Scholar 

  • Berthrong ST, Finzi AC. 2006. Amino acid cycling in three cold-temperate forests of the northeastern USA. Soil Biology and Biochemistry 38:861–9.

    Article  CAS  Google Scholar 

  • Bird JA, Herman DJ, Firestone MK. 2011. Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil. Soil Biology & Biochemistry 43:718–25.

    Article  CAS  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ. 1998. Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology 36:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Brzostek ER, Blair JM, Dukes JS, Frey SD, Hobbie SE, Melillo JM, Mitchell RJ, Pendall E, Reich PB, Shaver GR. 2012. The effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks to nitrogen availability are not universal. Global Change Biology 18:2617–25.

    Article  Google Scholar 

  • Burton J, Chen CR, Xu ZH, Ghadiri H. 2007. Gross nitrogen transformations in adjacent native and plantation forest’s of subtropical Australia. Soil Biology & Biochemistry 39:426–33.

    Article  CAS  Google Scholar 

  • Carter MR, Gregorich EG. 2008. Soil sampling and methods of analysis. Boca Raton: CRC Press.

    Google Scholar 

  • Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MGA. 2015. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends in Plant Science 20:283–90.

    Article  CAS  PubMed  Google Scholar 

  • Chantigny MH, Angers DA, Kaiser K, Kalbitz K. 2006. Extraction and characterization of dissolved organic matter. Boca Raton: CRC Press. pp 624–6.

    Google Scholar 

  • Chen SP, Bai YF, Lin GH, Liang L, Han XG. 2005. Effects of grazing on photosynthetic characteristics of major steppe species in the Xinlin River Basin, Inner Mongolia, China. Photosynthetica 43:559–65.

    Article  Google Scholar 

  • Chen Q, Wang Z-L, Zou CB, Fan Y, Dittert K, Lin S. 2018. Legacy effects of historical grazing affect the response of vegetation dynamics to water and nitrogen addition in semi-arid steppe. Applied Vegetation Science 21:229–39.

    Article  Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak A, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, van Veen JA, Kowalchuk GA. 2010. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America 107:10938–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eom AH, Wilson GWT, Hartnett DC. 2001. Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia 93:233–42.

    Article  Google Scholar 

  • Fitzhugh RD, Driscoll CT, Groffman PM, Tierney GL, Fahey TJ, Hardy JP. 2001. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry 56:215–38.

    Article  CAS  Google Scholar 

  • Gehring CA, Whitham TG. 2002. Mycorrhizae-herbivore interactions: population and community consequences. In: van der Heijden M, Sanders I, Eds. Mycorrhizal ecology, ecological studies. Heidelberg, Germany: Springer, pp 295–320.

  • Geisseler D, Horwath WR, Joergensen RG, Ludwig B. 2010. Pathways of nitrogen utilization by soil microorganisms: a review. Soil Biology & Biochemistry 42:2058–67.

    Article  CAS  Google Scholar 

  • Grman E, Robinson TMP. 2013. Resource availability and imbalance affect plant-mycorrhizal interactions: a field test of three hypotheses. Ecology 94:62–71.

    Article  PubMed  Google Scholar 

  • Hart SC, Stark JM, Davidson EA, Firestone MK. 1994. Nitrogen mineralization, immobilization, and nitrification. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A, Mickelson SH, Eds. Methods of soil analysis part 2: microbiological and biochemical properties. Madison, USA: Soil Science Society of America, pp 985–1018.

  • Hartnett DC, Wilson GWT. 1999. Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187–95.

    Article  Google Scholar 

  • Hartnett DC, Wilson GWT. 2002. The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant and Soil 244:319–31.

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Vitousek PM. 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology & Evolution 15:238–43.

    Article  Google Scholar 

  • Hill PW, Marsden KA, Jones DL. 2013. How significant to plant N nutrition is the direct consumption of soil microbes by roots? New Phytologist 199:948–55.

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Fitter AH. 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America 107:13754–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Storer K. 2015. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant and Soil 386:1–19.

    Article  CAS  Google Scholar 

  • Joergensen RG, Mueller T. 1996. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value. Soil Biology & Biochemistry 28:33–7.

    Article  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135:575–86.

    Article  Google Scholar 

  • Jones DL, Owen AG, Farrar JF. 2002. Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biology & Biochemistry 34:1893–902.

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y. 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytologist 163:459–80.

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Shannon D, Junvee-Fortune T, Farrarc JF. 2005. Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biology & Biochemistry 37:179–81.

    Article  CAS  Google Scholar 

  • Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV. 2015. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytologist 205:1537–51.

    Article  CAS  PubMed  Google Scholar 

  • Khanna PK, Raison RJ. 2013. In situ core methods for estimating soil mineral-N fluxes: Re-evaluation based on 25 years of application and experience. Soil Biology and Biochemistry 64:203–10.

    Article  CAS  Google Scholar 

  • Leigh J, Fitter AH, Hodge A. 2011. Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria. Fems Microbiology Ecology 76:428–38.

    Article  CAS  PubMed  Google Scholar 

  • Li WH, Xu FW, Zheng SX, Taube FH, Bai YF. 2017. Patterns and thresholds of grazing-induced changes in community structure and ecosystem functioning: species-level responses and the critical role of species traits. Journal of Applied Ecology 54:963–75.

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK. 1999. Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80:1623–31.

    Article  Google Scholar 

  • Martinez-Garcia LB, De Deyn GB, Pugnaire FI, Kothamasi D, van der Heijden MGA. 2017. Symbiotic soil fungi enhance ecosystem resilience to climate change. Global Change Biology 23:5228–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moe LA. 2013. Amino acids in the rhizosphere: from plants to microbes. American Journal of Botany 100:1692–705.

    Article  CAS  PubMed  Google Scholar 

  • Nasholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P. 1998. Boreal forest plants take up organic nitrogen. Nature 392:914–16.

    Article  CAS  Google Scholar 

  • O’Connor PJ, Smith SE, Smith FA. 2002. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist 154:209–18.

    Article  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology 11:789–99.

    Article  CAS  PubMed  Google Scholar 

  • Phillips J, Hayman D. 1970. Improved procedures for cleaning and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:158–60.

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC. 2016. nlme: linear and nonlinear mixed effects models. R package version 3.1-128. [WWW document] URL http://CRAN.R-project.org/package=nlme [accessed 1 September 2017].

  • Raison RJ, Connell MJ, Khanna PK. 1987. Methodology for studying fluxes of soil mineral-N in situ. Soil Biology & Biochemistry 19:521–30.

    Article  CAS  Google Scholar 

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry 34:1309–15.

    Article  CAS  Google Scholar 

  • Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602.

    Article  Google Scholar 

  • Schönbach P, Wan HW, Gierus M, Bai YF, Muller K, Lin LJ, Susenbeth A, Taube F. 2011. Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant and Soil 340:103–15.

    Article  CAS  Google Scholar 

  • Shan YM, Chen DM, Guan XX, Zheng SX, Chen HJ, Wang MJ, Bai YF. 2011. Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland. Soil Biology & Biochemistry 43:1943–54.

    Article  CAS  Google Scholar 

  • Singh BK, Nunan N, Ridgway KP, McNicol J, Young JPW, Daniell TJ, Prosser JI, Millard P. 2008. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Environmental Microbiology 10:534–41.

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62:227–50.

    Article  CAS  PubMed  Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot JM, Finzi AC. 2008. Differential effects of sugar maple, red oak, and hemlock tannins on carbon and nitrogen cycling in temperate forest soils. Oecologia 155:583–92.

    Article  PubMed  Google Scholar 

  • Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD. 2006. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. Fems Microbiology Letters 254:34–40.

    Article  CAS  PubMed  Google Scholar 

  • Tuomi J, Kytoviita MM, Hardling R. 2001. Cost efficiency of nutrient acquisition and the advantage of mycorrhizal symbiosis for the host plant. Oikos 92:62–70.

    Article  Google Scholar 

  • van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR. 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist 172:739–52.

    Article  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry 19:703–7.

    Article  CAS  Google Scholar 

  • Veresoglou SD, Chen BD, Rillig MC. 2012. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology & Biochemistry 46:53–62.

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629–33.

    Article  CAS  PubMed  Google Scholar 

  • Warren CR. 2012. Post-uptake metabolism affects quantification of amino acid uptake. New Phytologist 193:522–31.

    Article  CAS  PubMed  Google Scholar 

  • Warren CR, Taranto MT. 2010. Temporal variation in pools of amino acids, inorganic and microbial N in a temperate grassland soil. Soil Biology & Biochemistry 42:353–9.

    Article  CAS  Google Scholar 

  • Yang GW, Liu N, Lu WJ, Wang S, Kan HM, Zhang YJ, Xu L, Chen YL. 2014. The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influence plant community productivity and ecosystems stability. Journal of Ecology 102:1072–82.

    Article  CAS  Google Scholar 

  • Yang X, Shen Y, Liu N, Wilson GWT, Cobb AB, Zhang YJ. 2018. Defoliation and arbuscular mycorrhizal fungi shape plant communities in overgrazed semiarid grasslands. Ecology 99:1847–56.

    Article  PubMed  Google Scholar 

  • Zhang ZL, Yuan YS, Zhao WQ, He HL, Li DD, He W, Liu Q, Yin HJ. 2017. Seasonal variations in the soil amino acid pool and flux following the conversion of a natural forest to a pine plantation on the eastern Tibetan Plateau, China. Soil Biology & Biochemistry 105:1–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate Shuijin Hu and Wim H. van der Putten for comments and suggestions on an early version of our manuscript. We thank the staff at the Inner Mongolia Grassland Ecosystem Research Station (IMGERS), Chinese Academy of Sciences for their help with field sampling. This study was supported by grants from the National Natural Science Foundation of China (31630010, 31320103916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfei Bai.

Additional information

Author Contributions

YB conceived the study; BT conducted the experimental treatment and field sampling; BT and JM conducted the laboratory analysis; BT, JM, RJ, YW and YB analyzed the data and contributed to the manuscript writing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Man, J., Jia, R. et al. Arbuscular Mycorrhizal Fungi Mediate Grazing Effects on Seasonal Soil Nitrogen Fluxes in a Steppe Ecosystem. Ecosystems 24, 1171–1183 (2021). https://doi.org/10.1007/s10021-020-00575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00575-8

Keywords

Navigation