Skip to main content

Advertisement

Log in

Subsidies of Aquatic Resources in Terrestrial Ecosystems

  • 20th Anniversary Paper
  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Floods, spatially complex water flows, and organism movements all generate important fluxes of aquatic-derived materials into terrestrial habitats, counteracting the gravity-driven downhill transport of matter from terrestrial-to-aquatic ecosystems. The magnitude of these aquatic subsidies is often smaller than terrestrial subsidies to aquatic ecosystems but higher in nutritional quality, energy density, and nutrient concentration. The lateral extent of biological aquatic subsidies is typically small, extending only a few meters into riparian habitat; however, terrestrial consumers often aggregate on shorelines to capitalize on these high-quality resources. Although the ecological effects of aquatic subsidies remain partially understood, it is clear that ongoing human modification to aquatic ecosystems, riparian habitats and river floodplains affect the magnitude, quality, and spatial and temporal patterning of aquatic subsidies in terrestrial landscapes. These changes will alter the character of aquatic–terrestrial coupling and have consequences for terrestrial organisms that rely on these high-quality and temporally dependable resource subsidies. Homogenization of landscapes and flow regimes, eutrophication, exotic species, and contaminants all represent threats to the vital flows of aquatic-derived resources into terrestrial ecosystems. Research emphasizing that landscapes are integrated terrestrial–aquatic systems, characterized by both biological and hydrological flows among habitats, is needed for understanding the consequences of aquatic subsidies and managing ecological risks of ongoing human development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aalto R, Maurice-Bourgoin L, Dunne T, Montgomery DR, Nittrouer CA, Guyot JL. 2003. Episodic sediment accumulation on Amazonian flood plains influenced by El Nino/Southern Oscillation. Nature 425:493–7.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong JB, Schindler DE. 2013. Going with the flow: spatial distributions of juvenile coho salmon track an annually shifting mosaic of water temperature. Ecosystems 16:1429–41.

    Article  CAS  Google Scholar 

  • Armstrong JB, Takimoto GT, Schindler DE, Hayes MM, Kaufman MJ. 2016. Resource waves: phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97:1099–112.

    Article  PubMed  Google Scholar 

  • Bartels P, Cucherousset J, Steger K, Eklov P, Tranvik LJ, Hillebrand H. 2012. Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics. Ecology 93:1173–82.

    Article  PubMed  Google Scholar 

  • Bartrons M, Gratton C, Spiesman BJ, Jake AM, Vander Zanden MJ. 2015. Taking the trophic bypass: aquatic–terrestrial linkage reduces methylmercury in a terrestrial food web. Ecol Appl 25:151–9.

    Article  PubMed  Google Scholar 

  • Bartrons M, Papeş M, Diebel MW, Gratton C, Vander Zanden MJ. 2013. Regional-level inputs of emergent aquatic insects from water to land. Ecosystems 16:1353–63.

    Article  CAS  Google Scholar 

  • Bastow JL, Sabo JL, Finlay JC, Power ME. 2002. A basal aquatic–terrestrial trophic link in rivers: algal subsidies via shore-dwelling grasshoppers. Oecologia 131:261–8.

    Article  Google Scholar 

  • Baxter CV, Fausch KD, Murakami M, Chapman PL. 2004. Nonnative stream fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 85:2656–63.

    Article  Google Scholar 

  • Baxter CV, Fausch KD, Saunders WC. 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50:201–20.

    Article  Google Scholar 

  • Bayley PB. 1995. Understanding large river-floodplain ecosystems. BioScience 45:153–8.

    Article  Google Scholar 

  • Beechie TJ, Pollock MM, Baker S. 2008. Channel incision, evolution and potential recovery in the Walla Walla and Tucannon River basins, northwestern USA. Earth Surf Process Landf 33:784–800.

    Article  Google Scholar 

  • Beechie TJ, Sear DA, Olden JD, Pess GR, Buffington JM, Moir H, Roni P, Pollock MM. 2010. Process-based principles for restoring river ecosystems. BioScience 60:209–22.

    Article  Google Scholar 

  • Bunn SE, Balcombe SR, Davies PM, Fellows CS, McKenzie-Smith FJ. 2006. Aquatic productivity and food webs of desert river ecosystems. In: Kingsford RT, Ed. Ecology of Desert Rivers. Cambridge: Cambridge University Press. p 76–99.

    Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–68.

    Article  Google Scholar 

  • Christensen JR, MacDuffee M, MacDonald RW, Whiticar M, Ross PS. 2005. Persistent organic pollutants in British Columbia grizzly bears: consequences of divergent diets. Environ Sci Technol 39:6952–60.

    Article  CAS  PubMed  Google Scholar 

  • Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE. 2008. The movement of aquatic mercury through terrestrial food webs. Science 320:335.

    Article  CAS  PubMed  Google Scholar 

  • Darimont CT, Bryan HM, Carlson SM, Hocking MD, MacDuffee M, Paquet PC, Price MHH, Reimchen TE, Reynolds JD, Wilmers CC. 2010. Salmon for terrestrial protected areas. Conserv Lett 3:379–89.

    Article  Google Scholar 

  • Davis JM, Rosemond AD, Small GE. 2011. Increasing donor ecosystem productivity decreases terrestrial consumer reliance on a stream resource subsidy. Oecologia 167:821–34.

    Article  PubMed  Google Scholar 

  • Dorfman EJ, Kingsford RT. 2001. Scale-dependent patterns of abundance and habitat use by cormorants in Australia and the importance of nomadism. J Arid Environ 49:677–94.

    Article  Google Scholar 

  • Downs SG, MacLeod CL, Lester JN. 1998. Mercury in precipitation and its relation to bioaccumulation in fish: a literature review. Water Air Soil Pollut 108:149–87.

    Article  CAS  Google Scholar 

  • Dreyer J, Townsend PA, Hook JC, Hoekman D, Vander Zanden MJ, Gratton C. 2015. Quantifying aquatic insect deposition from lake to land. Ecology 96:499–509.

    Article  PubMed  Google Scholar 

  • Epanchin PN, Knapp RA, Lawler SP. 2010. Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies. Ecology 91:2406–15.

    Article  PubMed  Google Scholar 

  • Finlay JC, Vredenburg VT. 2007. Introduced trout sever trophic connections in watersheds: consequences for a declining amphibians. Ecology 88:2187–98.

    Article  PubMed  Google Scholar 

  • Francis TB, Schindler DE, Fox JM, Seminet-Reneau E. 2007. Effects of urbanization on the dynamics of organic sediments in temperate lakes. Ecosystems 10:1057–68.

    Article  CAS  Google Scholar 

  • Francis TB, Schindler DE, Moore JW. 2006. Aquatic insects play a minor role in dispersing salmon-derived nutrients into riparian forests in southwestern Alaska. Can J Fish Aquat Sci 63:2543–52.

    Article  Google Scholar 

  • Gende SM, Edwards RT, Willson MF, Wipfli MS. 2002. Pacific salmon in aquatic and terrestrial ecosystems. BioScience 52:917–28.

    Article  Google Scholar 

  • Gladyshev MI, Arts MT, Sushchik NI. 2009. Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA+ DHA) from aquatic to terrestrial ecosystems. In: Arts MT, Brett MT, Kainz M, Eds. Lipids in aquatic ecosystems. NewYork: Springer. p 179–210.

    Chapter  Google Scholar 

  • Gratton C, Vander Zanden MJ. 2009. Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems. Ecology 90:2689–99.

    Article  PubMed  Google Scholar 

  • Gurnell AM, Bertoldi W, Tockner K, Wharton G, Zolezzi G. 2016. How large is a river? Conceptualizing river landscape signatures and envelopes in four dimensions. WIREs Water 3:313–25.

    Article  Google Scholar 

  • Hagen EM, Sabo JL. 2014. Temporal variability in insectivorous bat activity along two desert streams with contrasting patterns of prey availability. J Arid Environ 102:104–12.

    Article  Google Scholar 

  • Heffernan JB, Soranno PA, Angilletta MJ, Buckley LB, Gruner DS, Keitt TH, Kellner JR, Kominosky JS, Rocha AV, Xiao J et al. 2014. Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12:5–14.

    Article  Google Scholar 

  • Helfield JM, Naiman RJ. 2001. Effects of salmon-derived nitrogen on riparian forest growth and implications for stream productivity. Ecology 82:2403–9.

    Article  Google Scholar 

  • Helfield JM, Naiman RJ. 2006. Keystone interactions: salmon and bear in riparian forests of Alaska. Ecosystems 9:167–80.

    Article  Google Scholar 

  • Hocking MD, Reimchen TE. 2006. Consumption and distribution of salmon (Oncorhynchus spp.) nutrients and energy by terrestrial flies. Can J Fish Aquat Sci 63:2076–86.

    Article  Google Scholar 

  • Hocking MD, Reynolds JD. 2011. Impacts of salmon on riparian plant diversity. Science 331:1609–12.

    Article  CAS  PubMed  Google Scholar 

  • Holtgrieve GW, Schindler DE, Jewett PK. 2009. Large predators and biogeochemical hotspots: brown bear (Ursus arctos) predation on salmon alters nitrogen cycling in riparian soils. Ecol Res 24:1125–35.

    Article  Google Scholar 

  • Jacobson PJ, Jacobson KM, Angermeier PL, Cherry DS. 2000. Hydrologic influences on soil properties along ephemeral rivers in the Namib Desert. J Arid Environ 45:21–34.

    Article  Google Scholar 

  • Johnson SP, Schindler DE. 2009. Trophic ecology of Pacific salmon (Oncorhynchus spp.) in the ocean: a synthesis of stable isotope research. Ecol Res 24:855–63.

    Article  CAS  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE. 1989. The flood pulse concept in river-floodplain systems. In: Dodge DP, Ed. Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences 106.

  • Kraus JM, Schmidt TS, Walters DM, Wanty RB, Zuellig RE, Wolf RE. 2014. Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs. Ecol Appl 24:235–43.

    Article  PubMed  Google Scholar 

  • Larsen S, Muehlbauer JD, Marti E. 2016. Resource subsidies between stream and terrestrial ecosystems under global change. Global Change Biol 22:2489–504.

    Article  Google Scholar 

  • Lau DCP, Leung KMY, Dudgeon D. 2008. Experimental dietary manipulations for determining the relative importance of allochthonous and autochthonous food resources in tropical streams. Freshw Biol 53:139–47.

    CAS  Google Scholar 

  • Likens GE. 1992. The ecosystem approach: its use and abuse. Oldendorf/Luhe, Germany: Ecology Institute.

    Google Scholar 

  • Lisi PJ, Schindler DE. 2011. Spatial variation in timing of marine subsidies influences riparian phenology through a plant-pollinator mutualism. Ecosphere 2:1–15. doi:10.1890/ES11-00173.1.

    Article  Google Scholar 

  • Lisi PJ, Schindler DE, Bentley KT, Pess GR. 2013. Association between geomorphic attributes of watersheds, water temperature, and salmon spawn timing in Alaskan streams. Geomorphology 185:78–86.

    Article  Google Scholar 

  • Lisi PJ, Schindler DE, Cline TJ, Scheuerell MD, Walsh PB. 2015. Watershed geomorphology and snowmelt control stream thermal sensitivity to air temperature. Geophys Res Lett 42:3380–8.

    Article  Google Scholar 

  • Luck M, Maumenee N, Whited D, Lucotch J, Chilcote S, Lorang M, Goodman D, McDonald K, Kimball J, Stanford J. 2010. Remote sensing analysis of physical complexity of North Pacific Rim rivers to assist wild salmon conservation. Earth Surf Process Landf 35:1330–43.

    Article  Google Scholar 

  • Lim SY, Hoshiba J, Moriguchi T, Salem N Jr. 2005. N-3 fatty acid deficiency induced by a modified artificial rearing method leads to poorer performance in spatial learning tasks. Pediat Res 58:741–8.

    Article  CAS  PubMed  Google Scholar 

  • Lindeman RL. 1942. The trophic-dynamic aspect of ecology. Ecology 23:399–418.

    Article  Google Scholar 

  • Lytle DA, Poff NL. 2004. Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100.

    Article  PubMed  Google Scholar 

  • Marcarelli AM, Baxter CV, Mineau MM, Hall RO. 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92:1215–25.

    Article  PubMed  Google Scholar 

  • Matthews KR, Knapp RA, Pope KL. 2002. Garter snake distributions in high-elevation aquatic ecosystems: is there a link with declining amphibian populations and nonnative trout introductions? J Herpetol 36:16–22.

    Article  Google Scholar 

  • Moore JW, Schindler DE. 2010. Spawning salmon and the phenology of emergence in stream insects. Proc R Soc B 277:1695–703.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris MR, Stanford JA. 2011. Floodplain succession and soil nitrogen accumulation on a salmon river in southwestern Kamchatka. Ecol Monogr 81:43–61.

    Article  Google Scholar 

  • Muehlbauer JD, Collins SF, Doyle MW, Tockner K. 2014. How wide is a stream? Spatial extent of the potential “stream signature” in terrestrial food webs using meta-analysis. Ecology 95:44–55.

    Article  PubMed  Google Scholar 

  • Nakano S, Murakami M. 2001. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci USA 98:166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naiman RJ, Bilby RE, Schindler DE, Helfield JM. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5:399–417.

    Article  Google Scholar 

  • Noe GB, Hupp CR. 2005. Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA. Ecol Appl 15:1178–90.

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Holdgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D. 2004. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–3.

    Article  CAS  PubMed  Google Scholar 

  • Palmer MA, Bernhardt ES, Allan JD, Lake PS, Alexander G, Brooks S, Carr J, Clayton S, Dahm CN, Follstad Shah J, Galat DL, Loss SG, Goodwin P, Hart DD, Hassett B, Jenkinson R, Kondolf GM, Lave R, Meyer JL, O’Donnell TK, Pagano L, Sudduth E. 2005. Standards for ecologically successful river restoration. J Appl Ecol 42:208–17.

    Article  Google Scholar 

  • Paetzold A, Schubert CJ, Tockner K. 2005. Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic insects. Ecosystems 8:748–59.

    Article  Google Scholar 

  • Pawlosky RJ, Denkins Y, Ward G, Salem N Jr. 1997. Retinal and brain accretion of long-chain polyunsaturated fatty acids in developing felines: the effects of corn oil-based maternal diets. Am J Clin Nutri 65:465–72.

    CAS  Google Scholar 

  • Peipoch M, Brauns M, Hauer FR, Weitere M, Valett HM. 2015. Ecological simplification: human influences on riverscape complexity. BioScience 65:1057–65.

    Article  Google Scholar 

  • Pinay G, Black VJ, Planty-Tabacchi AM, Gumiero B, Décamps H. 2000. Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50:163–82.

    Article  Google Scholar 

  • Pinay G, Clément JC, Naiman RJ. 2002. Basic principles and ecological consequences of changing water regimes on nitrogen cycling in fluvial systems. Environ Manag 30:481–91.

    Article  Google Scholar 

  • Pinay G, O’Keefe TC, Edwards RT, Naiman RJ. 2009. Nitrate removal in the hyporheic zone of a salmon river in Alaska. River Res Appl 25:367–75.

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC. 1997. The natural flow regime. BioScience 47:769–84.

    Article  Google Scholar 

  • Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Ann Rev Ecol Syst 28:289–316.

    Article  Google Scholar 

  • Polis GA, Power M, Huxel GR, Eds. 2004. Food webs at the landscape level. Chicago: University of Chicago Press.

    Google Scholar 

  • Power ME, Rainey WE. 2000. Food webs and resource sheds: Towards spatially delimiting trophic interactions. In: Hutchings MJ, John EA, Stewart AJA, Eds. Ecological consequences of habitat heterogeneity. Oxford: Blackwell Scientific. p 291–314.

    Google Scholar 

  • Power ME, Rainey WE, Parker , Sabo JL, Smyth A, Smyth A, Khandwala S, Finlay JC, McNeely FC, Marsee K, Anderson C. 2004. River-to-watershed subsidies in an old-growth conifer forest. In: Polis GA, Power ME, Huxel GR, Eds. Food webs at the landscape scale. Chicago: University of Chicago Press. p 217–40.

    Google Scholar 

  • Reimchen TE. 2000. Some ecological and evolutionary aspects of bear-salmon interactions in coastal British Columbia. Can J Zool 78:448–57.

    Article  Google Scholar 

  • Richardson JS, Zhang Y, Marczak LB. 2010. Resource subsidies across the land-freshwater interface and responses in recipient communities. River Res Appl 26:55–66.

    Article  Google Scholar 

  • Roshier DA, Robertson AI, Kingsford RT. 2002. Responses of waterbirds to flooding in an arid region of Australia and implications for conservation. Biol Conserv 106:399–411.

    Article  Google Scholar 

  • Schindler DE, Scheuerell MD, Moore JW, Gende SM, Francis TB, Palen WJ. 2003. Pacific salmon and the ecology of coastal ecosystems. Front Ecol Environ 1:31–7.

    Article  Google Scholar 

  • Schindler DE, Armstrong JB, Bentley KT, Jankowski K, Lisi PJ, Payne LX. 2013. Riding the crimson tide: mobile consumers track phenological variation in spawning of an anadromous fish. Biol Lett 9:20130048.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz R, Bundschuh M, Gergs R, Brühl CA, Diehl D, Entling MH, Fahse L, Frör O, Jungkunst HF, Lorke A, Schäfer RB, Schaumann GE, Schwenk K. 2015. Review on environmental alterations propagating from aquatic to terrestrial ecosystems. Sci Tot Environ 15:246–61.

    Article  Google Scholar 

  • Shurin JB, Gruner DS, Hillebrand H. 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc R Soc B 273:1–9.

    Article  PubMed  Google Scholar 

  • Spink A, Sparks RE, Van Oorchot M, Verhoeven JTA. 1998. Nutrient dynamics of large river floodplains. Regul Rivers 14:203–16.

    Article  Google Scholar 

  • Stanford JA, Ward JV. 1993. An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. J N Am Benthol Soc 12:48–60.

    Article  Google Scholar 

  • St. Louis VL, Barlow JC. 1993. The reproductive success of tree swallows nesting near experimentally acidified lakes in northwest Ontario. Can J Zool 71:1090–7.

    Article  Google Scholar 

  • Torres-Ruiz M, Wehr JD, Perrone AA. 2007. Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. J N Am Benthol Soc 26:509–22.

    Article  Google Scholar 

  • Valett HM, Baker MA, Morrice JA, Crawford CS, Molles MC, Dahm CN, Moyer DL, Thibault JR, Ellis LM. 2005. Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain. Ecology 86:220–34.

    Article  Google Scholar 

  • Walters DM, Fritz KM, Otter RR. 2008. The dark side of subsidies: adult stream insects export organic contaminants to riparian predators. Ecol Appl 18:1835–41.

    Article  PubMed  Google Scholar 

  • Willson MF, Gende SM, Bisson PA. 2004. Anadromous fishes as ecological links between ocean fresh water, and land. In: Polis GA, Power M, Huxel GR, Eds. Food webs at the landscape scale. Chicago: University of Chicago Press. p 284–300.

    Google Scholar 

  • Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. 2015. A global boom in hydropower dam construction. Aquat Sci 77:161–70.

    Article  Google Scholar 

  • Zarnetske JP, Haggerty R, Wondzell SM, Baker MA. 2011. Labile dissolved organic carbon supply limits hyporheic denitrification. J Geophys Res Biogeosci 116:G01025. doi:10.1029/2010JG001356.

    Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the National Science Foundation, the Western Alaska Landscape Conservation Cooperative, and the Harriet Bullitt Chair in Conservation for support. APS was supported by an NSF GRFP fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Schindler.

Additional information

Author contributions

Daniel E. Schindler and Adrianne P. Smits wrote the manuscript. Adrianne P. Smits made the figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schindler, D.E., Smits, A.P. Subsidies of Aquatic Resources in Terrestrial Ecosystems. Ecosystems 20, 78–93 (2017). https://doi.org/10.1007/s10021-016-0050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-0050-7

Keywords

Navigation