Skip to main content

Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA+DHA) from aquatic to terrestrial ecosystems

  • Chapter
  • First Online:
Lipids in Aquatic Ecosystems

Abstract

In recent decades polyunsaturated fatty acids (PUFA) have come to be recognized as compounds with considerable physiological importance for animals at all taxonomic levels, including humans. Animals do not have the enzymes necessary to insert double bonds in fatty acid molecules in positions closer than the 7th carbon (designated n-7 or ω7) from the methyl end of the molecule; therefore, 18-carbon-long PUFA such as linoleic acid (LIN; 18:2n-6) and α-linolenic acid (ALA; 18:3n-3) are essential dietary nutrients (Fig. 8.1). These two essential PUFA are primarily synthesized by plants (both vascular plants and algae) and by some fungi (Fig. 8.1). These PUFA are the biochemical precursors of the most physiologically active PUFA: arachidonic acid (ARA; 20:4n-6), eicosapentaenoic acid (EPA; 20:5n-3), and docosahexaenoic acid (DHA; 22:6n-3). Higher plants cannot desaturate and elongate ALA to EPA and DHA; however, many algae can perform these reactions (Fig. 8.1, and see Sect. 8.2 for details).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The two long chain highly unsaturated fatty n-3 fatty acids (i.e. EPA and DHA) will be referred to in this chapter as n-3 HUFA or, for brevity, simply as HUFA.

References

  • Abba, C., Mussa, P.P., Vercelli, A. and Raviri, G. 2005. Essential fatty acids supplementation in different-stage atopic dogs fed on a controlled diet. J. Anim. Physiol. Anim. Nutr. 89:203–207

    CAS  Google Scholar 

  • Acuna, R., Contreras, F. and Kerekes, J. 1994. Aquatic bird densities in two coastal lagoon systems in Chiapas State, Mexico, a preliminary assessment. Hydrobiologia. 279/280:101–106

    Google Scholar 

  • Ahlgren, G., Blomqvist, P., Boberg, M. and Gustafsson, I.-B. 1994. Fatty acid content of the dorsal muscle – an indicator of fat quality in freshwater fish. J. Fish Biol. 45:131–157

    CAS  Google Scholar 

  • Ahlgren, G., Carlstein, M. and Gustafsson, I.-B. 1999. Effects of natural and commercial diets on the fatty acid content of European grayling. J. Fish. Biol. 55:1142–1155

    CAS  Google Scholar 

  • Ahlgren, G., Ahlgren, I., Hernandez, S. and Mejia, M. 2002. Fatty acid quality of seston in the Lakes Xolotlan and Cocibolca, Nicaragua. Verh. Internat. Verein. Limnol. 28:786–791

    CAS  Google Scholar 

  • Ahlgren, G., Van Nieuwerburgh, L., Wanstrand, I., Pedersen, M., Boberg, M. and Snoeijs, P. 2005. Imbalance of fatty acids in the base of the Baltic Sea food web − a mesocosm study. Can. J. Fish. Aquat. Sci. 62:2240–2253

    CAS  Google Scholar 

  • Aktas, H. and Halperin, J.A. 2004. Translational regulation of gene expression by ω-3 fatty acids. J. Nutr. 134:2487S–2491S

    PubMed  CAS  Google Scholar 

  • Alimov, A.F. 1989. An Introduction to Production Hydrobiology. Leningrad: Gidrometeoizdat (in Russian). 152 pgs

    Google Scholar 

  • Arts, M.T., Ackman, R.G. and Holub, B.J. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58:122–137

    CAS  Google Scholar 

  • Baldwin, J.R. and Lovvorn, J.R. 1994. Habitats and tidal accessibility of the marine foods of dabbling ducks and brant in Boundary Bay, British Columbia. Mar. Biol. 120:627–638

    Google Scholar 

  • Ballinger, A. and Lake, P.S. 2006. Energy and nutrient fluxes from rivers and streams into terrestrial food webs. Mar. Freshw. Res. 57:15–28

    Google Scholar 

  • Baxter, C.V., Fausch, K.D. and Saunders, W.C. 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 50:201–220

    Google Scholar 

  • Beamish, R.J., Noakes, D.J., McFarlane, G.A., Klyashtorin, L., Ivanov, V.V. and Kurashov, V. 1999. The regime concept and natural trends in the production of Pacific salmon. Can. J. Fish. Aquat. Sci. 56:516–526

    Google Scholar 

  • Ben-David, M., Titus, K. and Beier, L.R. 2004. Consumption of salmon by Alaskan brown bears: a trade-off between nutritional requirements and the risk of infanticide? Oecologia 138:465–474

    PubMed  Google Scholar 

  • Benesh, D.P., Duclos, L.M. and Nichol, B.B. 2005. The behavioral response of amphipods harboring Corynosoma constrictum (acanthocephala) to various components of light. J. Parasitol. 91:731–736

    PubMed  Google Scholar 

  • Blair, T.A., Cree, A. and Skeaff, C.M. 2000. Plasma fatty acids, triacylglycerol and cholesterol of the tuatara (Sphenodon punctatus punctatus) from islands differing in the presence of rats and the abundance of seabirds. J. Zool. 252:463–472

    Google Scholar 

  • Boersma, M. and Kreutzer, C. 2002. Life at the edge: is food quality really of minor importance at low quantities? Ecology 83:2552–2561

    Google Scholar 

  • Broadhurst, C.L., Wang, Y., Crawford, M.A., Cunnane, S.C., Parkington, J.E. and Schmidt, W.F. 2002. Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comp. Biochem. Physiol. B. 131:653–673

    PubMed  Google Scholar 

  • Burton, T.M. and Likens, G.E. 1975. Energy flow and nutrient cycling in salamander population in the Hubbard Brook experimental forest, New Hampshire. Ecology. 56:1068–1080

    CAS  Google Scholar 

  • Cohen, Z., Norman, H.A. and Heimer, Y.M. 1995. Microalgae as a source of ω3 fatty acids. In: Plants in human nutrition. World review of nutrition and dietetics, Vol. 77. Edited by Simopoulos, A.P. Basel: Karger, pp. 1–31

    Google Scholar 

  • Copeman, L.A., Parrish, C.C., Brown, J.A. and Harel, M. 2002. Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail founder (Limanda ferruginea): a live food enrichment experiment. Aquaculture 210:285–304

    CAS  Google Scholar 

  • Cripps, G.C., Watkins, J.L., Hill, H.J. and Atkinson, A. 1999. Fatty acid content of Antarctic krill Euphausia superba at South Georgia related to regional populations and variations in diet. Mar. Ecol. Prog. Ser. 181:177–188

    CAS  Google Scholar 

  • Damude, H.G. and Kinney, A.J. 2007. Engineering oilseed plants for a sustainable, land-based source of long chain polyunsaturated fatty acids. Lipids 42:179–185

    PubMed  CAS  Google Scholar 

  • Danielsdottir, M.G., Brett, M.T. and Arhonditsis, G.B. 2007. Phytoplankton food quality control of planktonic food web processes. Hydrobiologia 589:29–41

    Google Scholar 

  • Darimont, C.T., Reimchen, T.E. and Paquet, P.C. 2003. Foraging behaviour by gray wolves on salmon streams in coastal British Columbia. Can. J. Zool. 81:349–353

    Google Scholar 

  • Davis, B.C. and Kris-Etherton, P.M. 2003. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am. J. Clin. Nutr. 78(Suppl):640S–646S

    PubMed  CAS  Google Scholar 

  • Dobey, S., Masters, D.V., Scheick, B.K., Clark, J.D., Pelton, M.R. and Sunquist, M.E. 2005. Ecology of Florida black bears in the Okefenokee-Osceola ecosystem. Wildlife Monogr. 158:1–41

    Google Scholar 

  • Downing, J.A., Prairie, Y.T., Cole, J.J., Duarte, C.M., Tranvik, L.J., Striegl, R.G., McDowell, W.H., Kortelainen, P., Caraco, N.F., Melack, J.M. and Middelburg, J.J. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51:2388–2397

    Google Scholar 

  • FAO. 2004. The State of World Fisheries and Aquaculture. Rome: FAO Fisheries Department

    Google Scholar 

  • Farrell, D.J. 1998. Enrichment of hen eggs with n-3 long-chain fatty acids and evaluation of enriched eggs in humans. Am. J. Clin. Nut. 68:538–544

    CAS  Google Scholar 

  • Fedorova, I., Hussein, N., Di Martino, C., Moriguchi, T., Hoshiba, J., Majchrzak, S. and Salem, N. Jr. 2007. An n-3 fatty acid deficient diet affects mouse spatial learning in the Barnes circular maze. Prostaglandins Leukot. Essent. Fatty Acids 77:269–277

    PubMed  CAS  Google Scholar 

  • Felicetti, L.A., Schwartz, C.C., Rye, R.O., Gunther, K.A., Crock, J.G., Haroldson, M.A., Waits, L. and Robbins, C.T. 2004. Use of naturally occurring mercury to determine the importance of cutthroat trout by Yellowstone grizzly bears. Can. J. Zool. 82:493–501

    CAS  Google Scholar 

  • Fleurence, J., Gutbier, G., Mabeaul, S. and Leray, C. 1994. Fatty acids from 11 marine macroalgae of the French Brittany coast. J. Appl. Phycol. 6:527–532

    CAS  Google Scholar 

  • Francis, T.B., Schindler, D.E. and Moore, J.W. 2006. Aquatic insects play a minor role in dispersing salmon-derived nutrients in southwestern Alaska. Can. J. Fish. Aquat. Sci. 63:2543–2552

    Google Scholar 

  • Freitag, H. 2004. Composition and longitudinal patterns of aquatic insect emergence in small rivers of Palawan Island, the Philippines. Int. Rev. Hydrobiol. 89:375–391

    Google Scholar 

  • Gardarsson, A. and Einarsson, A. 2002. The food relations of the waterbirds of Lake Myvatn, Iceland. Verh. Internat. Verein. Limnol. 28:754–763

    Google Scholar 

  • Garg, M.L., Wood, L.G., Singh, H. and Moughan, P.J. 2006. Means of delivering recommended levels of long chain n-3 polyunsaturated fatty acids in human diets. J. Food Sci. 71:R66–R71

    CAS  Google Scholar 

  • Geiser, F., Firth, B.T. and Seymour, R.S. 1992. Polyunsaturated dietary lipids lower the selected body temperature of a lizard. J. Comp. Physiol. B 162:1–4

    PubMed  CAS  Google Scholar 

  • Gende, S.M., Quinn, T.P. and Willson, M.F. 2001. Consumption choice by bears feeding on salmon. Oecologia. 127:372–382

    Google Scholar 

  • Gere, G. and Andrikovics, S. 1994. Feeding of ducks and their effects on water quality. Hydrobiologia. 279/280:157–161

    Google Scholar 

  • Gerster, H. 1998. Can adults adequately convert α-linoleic acid (18:3n–3) to eicosapentaenoic acid (20:5n–3) and docosahexaenoic acid (22:6n–3)? Int. J. Vitam. Nutr. Res. 68:159–173

    CAS  Google Scholar 

  • Gladyshev, M.I ., Sushchik, N.N., Kalachova, G.S., Dubovskaya, O.P. and Makhutova, O.N. 2006a. Influence of sestonic elemental and essential fatty acid contents in a eutrophic reservoir in Siberia on population growth of Daphnia (longispina group). J. Plankton Res. 28:907–917

    CAS  Google Scholar 

  • Gladyshev, M.I., Sushchik, N.N., Gubanenko, G.A., Demirchievam, S.M. and Kalachova, G.S. 2006b. Effect of way of cooking on content of essential polyunsaturated fatty acids in muscle tissue of humpback salmon (Oncorhynchus gorbuscha). Food Chem. 96:446–451

    CAS  Google Scholar 

  • Gladyshev, M.I., Sushchik, N.N., Gubanenko, G.A., Demirchievam, S.M. and Kalachova, G.S. 2007. Effect of boiling and frying on the content of essential polyunsaturated fatty acids in muscle tissue of four fish species. Food Chem. 101:1694–1700

    CAS  Google Scholar 

  • Goedkoop, W., Sonesten, L., Ahlgren, G. and Boberg, M. 2000. Fatty acids in profundal benthic invertebrates and their major food resources in Lake Erken, Sweden: seasonal variation and trophic indications. Can. J. Fish. Aquat. Sci. 57:2267–2279

    CAS  Google Scholar 

  • Green, K.H., Wong, S.C.F. and Weiler, H.A. 2004. The effect of dietary n-3 long-chain polyunsaturated fatty acids on femur mineral density and biomarkers of bone metabolism in healthy, diabetic and dietary-restricted growing rats. Prostaglandins Leukot. Essent. Fatty Acids 71:121–130

    PubMed  CAS  Google Scholar 

  • Gulati, R.D. and DeMott, W.R. 1997. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw. Biol. 38:753–768

    Google Scholar 

  • Hanson, B.J., Cummins, K.W., Cargill, A.S. and Lowry, R.R. 1985. Lipid content, fatty acid composition, and the effect of diet of fats of aquatic insects. Comp. Biochem. Physiol. 
B 80:257–276

    Google Scholar 

  • Harwood, J.L. 1996. Recent advances in the biosynthesis of plant fatty acids. Biochim. Biophys. Acta. 1301:7–56

    PubMed  Google Scholar 

  • Hebert, C.E., Shutt, J.L. and Ball, R.O. 2002. Plasma amino acid concentrations as an indicator of protein availability to breeding herring gulls (Larus argentatus). Auk 119:185–200

    Google Scholar 

  • Hebert, C.E., Weseloh, D.V.C., Idrissi, A., Arts, M.T., O’Gorman, R., Gorman, O.T., Locke, B., Madenjian, C.P. and Roseman, E.F. 2008. Restoring piscivorous fish populations in the Laurentian Great Lakes causes seabird dietary change. Ecology 89:891–897

    PubMed  Google Scholar 

  • Heinz, E. 1993. Biosynthesis of polyunsaturated fatty acids. In: Lipid metabolism in plants. Edited by Moore, T.S. Boca Raton, USA: CRC Press, pp. 34–89

    Google Scholar 

  • Helfield, J.M. and Naiman, R.J. 2006. Keystone interactions: salmon and bear in riparian forests of Alaska. Ecosystems 9:167–180

    Google Scholar 

  • Hibbeln, J.R., Nieminen, L.R.G. and Lands, W.E.M. 2004. Increasing homicide rates and linoleic acid consumption among five western countries, 1961–2000. Lipids 39:1207–1213

    PubMed  CAS  Google Scholar 

  • Hibbeln, J.R., Ferguson, T.A. and Blasbalg, T.L. 2006. Omega-3 fatty acid deficiencies in neurodevelopment, aggression and autonomic dysregulation: opportunities for intervention. Int. Rev. Psychiatry 18:107–118

    PubMed  Google Scholar 

  • Hilderbrand, G.V., Jenkins, S.G., Schwartz, C.C., Hanley, T.A. and Robbins, C.T. 1999a. Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears. Can. J. Zool. 77:1623–1630

    Google Scholar 

  • Hilderbrand, G.V., Hanley, T.A., Robbins, C.T. and Schwartz, C.C. 1999b. Role of brown bears (Ursus arctos) in the flow of marine nitrogen into a terrestrial ecosystem. Oecologia 121:546–550

    Google Scholar 

  • Hilderbrand, G.V., Farley, S.D., Schwartz, C.C. and Robbins, C.T. 2004. Importance of salmon to wildlife: implications for integrated management. Ursus 15:1–9

    Google Scholar 

  • Hoffman, L.C. 2008. The yield and nutritional value of meat from African ungulates, camelidae, rodents, ratites and reptiles. Meat Sci. 80:94–100

    CAS  Google Scholar 

  • Howard, R.W. and Stanley-Samuelson, D.W. 1996. Fatty acid composition of fat body and Malpighian tubules of the tenebrionid beetle, Zophobas atratus: significance in eicosanoid-mediated physiology. Comp. Biochem. Physiol. B 115:429–437

    Google Scholar 

  • Hoyer, M.V. and Canfield, D.E. Jr. 1994. Bird abundance and species richness on Florida lakes: influence of trophic status, lake morphology, and aquatic macrophytes. Hydrobiologia 297/280:107–119

    Google Scholar 

  • Hulbert, A.J., Rana, T. and Couture, P. 2002. The acyl composition of mammalian phospholipids: an allometric analysis. Comp. Biochem. Physiol. B. 132:515–527

    PubMed  CAS  Google Scholar 

  • Huryn, A.D. and Wallace, J.B. 2000. Life history and production of stream insects. Annu. Rev. Entomol. 45:83–110

    PubMed  CAS  Google Scholar 

  • Kainz, M., Arts, M.T. and Mazumder, A. 2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnol. Oceanogr. 49:1784–1793

    CAS  Google Scholar 

  • Kolanowski, W., Stolyhwo, A. and Grabowski, M. 2007. Fatty acid composition of selected fresh water gammarids (Amphipoda, Crustacea): a potentially innovative source of omega-3 LC PUFA. J. Am. Oil. Chem. Soc. 84:827–833

    CAS  Google Scholar 

  • Koussoroplis, A.M., Lemarchand, C., Bec, A., Desvilettes, C., Amblard, C., Fournier, C., Berny, P. and Bourdier, G. 2008. From aquatic to terrestrial food webs: decrease of the docosahexaenoic acid/linoleic acid ratio. Lipids 43:461–466

    PubMed  CAS  Google Scholar 

  • Lauritzen, L., Hansen, H.S., Jorgensen, M.H. and Michaelsen, K.F. 2001. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 40:1–94

    PubMed  CAS  Google Scholar 

  • Lim, S.-Y., Hoshiba, J., Moriguchi, T. and Salem, N. Jr. 2005a. N-3 fatty acid deficiency induced by a modified artificial rearing method leads to poorer performance in spatial learning tasks. Pediatr. Res. 58:741–748

    CAS  Google Scholar 

  • Lim, S.-Y., Hoshiba, J. and Salem, N. Jr. 2005b. An extraordinary degree of structural specificity is required in neural phospholipids for optimal brain function: n-6 docosapentaenoic acid substitution for docosahexaenoic acid leads to a loss in spatial task performance. J. Neurochem. 95:848–857

    CAS  Google Scholar 

  • Leeper, D.A. and Taylor, B.E. 1998. Insect emergence from a South Carolina (USA) temporary wetland pond, with emphasis on the Chironomidae (Diptera). J. North Am. Benthol. Soc. 17:54–72

    Google Scholar 

  • Leonard, A.E., Pereira, S.L., Sprecher, H. and Huang, Y.S. 2004. Elongation of long-chain fatty acids. Prog. Lipid Res. 43:36–54

    PubMed  CAS  Google Scholar 

  • MacKenzie, R.A. 2005. Spatial and temporal patterns in insect emergence from a southern Marine salt marsh. Am. Midl. Nat. 153:257–269

    Google Scholar 

  • MacKenzie, R.A. and Kaster, J.L. 2004. Temporal and spatial patterns of insect emergence from a Lake Michigan coastal wetland. Wetlands 24:688–700

    Google Scholar 

  • Mansour, M.P., Holdsworth, D.G., Forbes, S.E., Macleod, C.K. and Volkman, J.K. 2005. High contents of 24:6(n-3) and 20:1(n-13) fatty acids in the brittle star Amphiura elandiformis from Tasmanian coastal sediments. Biochem. Syst. Ecol. 33:659–674

    CAS  Google Scholar 

  • Marion, L., Clergeau, P., Brient, L. and Bertru, G. 1994. The importance of avian-contributed nitrogen (N) and phosphorus (P) to Lake Grand-Lieu, France. Hydrobiologia 279/280:133–147

    Google Scholar 

  • Merritt, J.F., Lima, M. and Bozinovic, F. 2001. Seasonal regulation in fluctuating small mammal populations: feedback structure and climate. Oikos 94:505–514

    Google Scholar 

  • Millar, J.S. and McAdam, A.G. 2001. Life on the edge: the demography of short-season populations of deer mice. Oikos 93:69–76

    Google Scholar 

  • Mills, G.L., McArthur, J.V., Wolfe, C., Aho, J.M. and Rader, R.B. 2001. Changes in fatty acid and hydrocarbon composition of leaves during decomposition in a southeastern blackwater stream. Arch. Hydrobiol. 152:315–328

    Google Scholar 

  • Mitchell, T.W., Ekroos, K., Blanksby, S.J., Hulbert, A.J. and Else, P.L. 2007. Differences in membrane acyl phospholipid composition between an endothermic mammal and an ectothermic reptile are not limited to any phospholipid class. J. Exp. Biol. 210:3440–3450

    PubMed  CAS  Google Scholar 

  • Musil, P. and Fuchs, R. 1994. Changes in abundance of water birds species in southern Bohemia (Czech Republic) in the last 10 years. Hydrobiologia. 279/280:511–519

    Google Scholar 

  • Müller-Navarra, D.C. 1995. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch. Hydrobiol. 132:297–307

    Google Scholar 

  • Müller-Navarra, D.C., Brett, M.T., Park, S., Chandra, S., Ballantyne, A.P., Zorita, E. and Goldman, C.R. 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427:69–72

    PubMed  Google Scholar 

  • Naiman, R.J., Bilby, R.E., Schindler, D.E. and Helfield, J.M. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5:399–417

    Google Scholar 

  • Nakano, S. and Murakami, M. 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. U.S.A. 98:166–170

    PubMed  CAS  Google Scholar 

  • Nor Aliza, A.R., Bedick, J.C., Rana, R.L., Tunaz, H., Wyatt Hoback, W. and Stanley, D.W. 2001. Arachidonic and eicosapentaenoic acids in tissues of the firefly, Photinus pyralis (Insecta: Coleoptera). Comp. Biochem. Physiol. A 128:251–257

    CAS  Google Scholar 

  • Ozyurt, G. and Polat, A. 2006. Amino acid and fatty acid composition of wild sea bass (Dicentrarchus labrax): a seasonal differentiation. Eur. Food Res. Technol. 222:316–320

    Google Scholar 

  • Ozyurt, G., Polat, A. and Ozkutuk, S. 2005. Seasonal changes in the fatty acids of gilthead sea bream (Sparus aurata) and white sea bream (Diplodus sargus) captured in Iskenderun Bay, eastern Mediterranean coast of Turkey. Eur. Food Res. Technol. 220:120–124

    Google Scholar 

  • Paetzold, A., Schubert, C.J. and Tockner, K. 2005. Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic insects. Ecosystems 8:748–759

    Google Scholar 

  • Pauly, D., Christensen, V., Guénette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R. and Zeller, D. 2002. Towards sustainability in world fisheries. Nature 418:689–695

    PubMed  CAS  Google Scholar 

  • Pawlosky, R.J., Denkins, Y., Ward, G. and Salem, N. Jr. 1997. Retinal and brain accretion of long-chain polyunsaturated fatty acids in developing felines: the effects of corn oil-based maternal diets. Am. J. Clin. Nutr. 65:465–472

    PubMed  CAS  Google Scholar 

  • Persson, J. and Vrede, T. 2006. Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshw. Biol. 51:887–900

    CAS  Google Scholar 

  • Plourde, M. and Cunnane, S.C. 2007. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl. Physiol. Nutr. Metabol. 32:619–634

    CAS  Google Scholar 

  • Poepperl, R. 2000. Benthic secondary production and biomass of insects emerging from a northern German temperate stream. Freshw. Biol. 44:199–211

    Google Scholar 

  • Polis, G.A. and Hurd, S.D. 1996. Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147:396–423

    Google Scholar 

  • Politia, L., Rotsteina, N. and Carrib, N. 2001. Effects of docosahexaenoic acid on retinal development: cellular and molecular aspects. Lipids 36:927–935

    Google Scholar 

  • Ponyi, J.E. 1994. Abundance and feeding of wintering and migrating aquatic birds in two sampling areas of Lake Balaton in 1983–1985. Hydrobiologia 279/280:63–69

    Google Scholar 

  • Pruitt, N.L. and Lu, C. 2008. Seasonal changes in phospholipid class and class-specific fatty acid composition associated with the onset of freeze tolerance in third-instar larvae of Eurosta solidaginis. Physiol. Biochem. Zool. 81:226–234

    PubMed  CAS  Google Scholar 

  • Quinn, T.P., Gende, S.M., Ruggerone, G.T. and Rogers, D.E. 2003. Density-dependent predation by brown bears (Ursus arctos) on sockeye salmon (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci. 60:553–562

    Google Scholar 

  • Raven, J.A. and Maberly, S.C. 2004. Plant productivity of inland waters. In: Chlorophyll a fluorescence. Advances in photosynthesis and respiration, Vol. 19. Edited by Papageorgiou, G.C. and Govindjee. Dordrecht: Springer, pp. 779–793

    Google Scholar 

  • Reimchen, T.E. 2000. Some ecological and evolutionary aspects of bear–salmon interactions in coastal British Columbia. Can. J. Zool. 78:448–457

    Google Scholar 

  • Richoux, N.E., Deibel, D., Thompson, R.J. and Parrish, C.C. 2005. Seasonal and developmental variation in the fatty acid composition of Mysis mixta (Mysidacea) and Acanthostepheia malmgreni (Amphipoda) from the hyperbenthos of a cold-ocean environment (Conception Bay, Newfoundland). J. Plankton Res. 27:719–733

    CAS  Google Scholar 

  • Robert, S.S. 2006. Production of eicosapentaenoic and docosahexaenoic acid-containing oils in transgenic land plants for human and aquaculture nutrition. Mar. Biotech. 8:103–109

    CAS  Google Scholar 

  • SanGiovanni, J.P. and Chew, E.Y. 2005. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retinal Eye Res. 24:87–138

    CAS  Google Scholar 

  • Sanzone, D.M., Meyer, J.L., Marti, E., Gardiner, E.P., Tank, J.L. and Grimm, N.B. 2003. Carbon and nitrogen transfer from a desert stream to riparian predators. Oecologia. 134:238–250

    PubMed  CAS  Google Scholar 

  • Schlechtriem, C., Arts, M.T. and Zellmer, I.D. 2006. Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (Crustacea, Cladocera). Lipids. 41:397–400

    PubMed  CAS  Google Scholar 

  • Shorland, F.B. 1963. The distribution of fatty acids in plant lipids. In: Chemical plant taxonomy. Edited by Swain, T. London, New York: Academic Press, pp. 253–311

    Google Scholar 

  • Silvers, K.M. and Scott, K.M. 2002. Fish consumption and selfreported physical and mental health status. Public Health Nutr. 5:427–431

    PubMed  Google Scholar 

  • Simopoulos, A.P. 2004a. The traditional diet of Greece and cancer. Eur. J. Cancer Prevent. 13:219–230

    CAS  Google Scholar 

  • Simopoulos, A.P. 2004b. Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 37:263–277

    Google Scholar 

  • Stagliano, D.M., Benke, A.C. and Anderson, D.H. 1998. Emergence of aquatic insects from 2 habitats in a small wetland of the southeastern USA: temporal patterns of numbers and biomass. J. North Am. Benthol. Soc. 17:37–53

    Google Scholar 

  • Stanley, D. 2006. Prostaglandins and other eicosanoids in insects: biological significance. Ann. Rev. Entomol. 51:25–44

    CAS  Google Scholar 

  • Stanley-Samuelson, D.W., Jensen, E., Nickerson, K.W., Tiebel, K., Ogg, C.L. and Howard, R.W. 1991. Insect immune response to bacterial infection is mediated by eicosanoids. Proc. Natl. Acad. Sci. U.S.A. 88:1064–1068

    PubMed  CAS  Google Scholar 

  • Stapp, P. and Polis, G.A. 2003. Marine resources subsidize insular rodent populations in the Gulf of California, Mexico. Oecologia 134:496–504

    PubMed  Google Scholar 

  • Stapp, P. and Van Horne, B. 1997. Response of Deer Mice (Peromyscis maniculatus) to shrubs in shortgrass prairie: linking small-scale movements and spatial distribution of individuals. Funct. Ecol. 11:644–651

    Google Scholar 

  • Sullivan, T.P., Lautenschlager, R.A. and Wagner, R.G. 1999. Clearcutting and burning of northern spruce-fir forests: implications for small mammal communities. J. Appl. Ecol. 36:327–344

    Google Scholar 

  • Surh, J., Ryu, J.S. and Kwon, H. 2003. Seasonal variations of fatty acid compositions in various Korean shellfish. J. Agric. Food Chem. 51:1617–1622

    PubMed  CAS  Google Scholar 

  • Sushchik, N.N., Gladyshev, M.I., Moskvichova, A.V., Makhutova, O.N. and Kalachova, G.S. 2003. Comparison of fatty acid composition in major lipid classes of the dominant benthic invertebrates of the Yenisei River. Comp. Biochem. Physiol. B 134:111–122

    PubMed  CAS  Google Scholar 

  • Sushchik, N.N., Gladyshev, M.I., Makhutova, O.N., Kalachova, G.S., Kravchuk, E.S. and Ivanova, E.A. 2004. Associating particulate essential fatty acids of the ω3 family with phytoplankton species composition in a Siberian reservoir. Freshw. Biol. 49:1206–1219

    CAS  Google Scholar 

  • Sushchik, N.N., Gladyshev, M.I., Kalachova, G.S., Makhutova, O.N. and Ageev, A.V. 2006. Comparison of seasonal dynamics of the essential PUFA contents in benthic invertebrates and grayling Thymallus arcticus in the Yenisei River. Comp. Biochem. Physiol. B. 145:278–287

    PubMed  CAS  Google Scholar 

  • Sushchik, N.N., Gladyshev, M.I. and Kalachova, G.S. 2007. Seasonal dynamics of fatty acid content of a common food fish from the Yenisei River, Siberian grayling, Thymallus arcticus. Food Chem. 104:1353–1358

    CAS  Google Scholar 

  • Suter, W. 1994. Overwintering waterfowl on Swiss lakes: how are abundance and species richness influenced by trophic status and lake morphology? Hydrobiologia 279/280:1–14

    Google Scholar 

  • Szepanski, M.M., Ben-David, M. and Van Ballenberghe, V. 1999. Assessment of anadromous salmon resources in the diet of the Alexander Archipelago wolf using stable isotope analysis. Oecologia 120:327–335

    Google Scholar 

  • Tocher, D.R., Leaver, M.J. and Hodson, P.A. 1998. Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Prog. Lipid Res. 37:73–117

    PubMed  CAS  Google Scholar 

  • Uscian, J.M. and Stanley-Samuelson, D.W. 1994. Fatty acid compositions of phospholipids and triacylglycerols from selected terrestrial arthropods. Comp. Biochem. Physiol. B 107:371–379

    CAS  Google Scholar 

  • Vanni, M.J., Layne, C.D. and Arnott, S.E. 1997. “Top-down” trophic interactions in lakes: effects of fish on nutrient dynamics. Ecology 78:1–20

    Google Scholar 

  • Wetzel, R.G. 1992. Gradient-dominated ecosystems: sources and regulatory function of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229:181–198

    CAS  Google Scholar 

  • Willson, M.F., Gende, S.M. and Marston, B.H. 1998. Fishes and the forest. BioScience. 48:455–462

    Google Scholar 

  • Winder, M., Schindler, D.E., Moore, J.W., Johnson, S.P. and Palen, W.J. 2005. Do bears facilitate transfer of salmon resources to aquatic macroinvertebrates? Can. J. Fish. Aquat. Sci. 62:2285–2293

    Google Scholar 

  • Wolff, R.L., Lavialle, O., Pëdrono, F., Pasquier, E., Deluc, L.G., Marpeau, A.M. and Aitzetmüller, K. 2001. Fatty acid composition of Pinaceae as taxonomic markers. Lipids 36:439–451

    PubMed  CAS  Google Scholar 

  • Wood, J.D., Enser, M., Fisher, A.V., Nute, G.R., Sheard, P.R., Richardson, R.I., Hughes, S.I. and Whittington, F.M. 2008. Fat deposition, fatty acid composition and meat quality: a review. Meat Sci. 78:343–358

    CAS  Google Scholar 

  • Woollhead, J. 1994. Birds in the trophic web of Lake Esrom, Denmark. Hydrobiologia. 279/280:29–38

    Google Scholar 

  • Zenebe, T., Ahlgren, G. and Boberg, M. 1998. Fatty acid content of some freshwater fish of commercial importance from tropical lakes in the Ethiopian Rift Valley. J. Fish Biol. 53:987–1005

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dan Baumgardt (Science and Operations Officer, National Weather Service, La Crosse, Wisconsin) for providing the Doppler radar images of mayfly emergence from the upper headwaters of the Mississippi River. The work was supported by Russian Foundation for Basic Research (RFBR) and Krasnoyarsk Science Foundation grant # 07-04-96803-r_yenisei and by RFBR grant # 07-05-00076 (M.I.G. and N.N.S) and by the National Water Research Institute, Environment Canada (M.T.A.). We are grateful to Drs. M. Kainz and M.T. Brett for useful comments on previous drafts of this chapter and to our anonymous reviewer whose insightful comments greatly improved our chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.I. Gladyshev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gladyshev, M., Arts, M., Sushchik, N. (2009). Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA+DHA) from aquatic to terrestrial ecosystems. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in Aquatic Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89366-2_8

Download citation

Publish with us

Policies and ethics