Skip to main content

Advertisement

Log in

Rapid Recovery from Eutrophication of a Stratified Lake by Disruption of Internal Nutrient Load

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Restoration of anthropogenically eutrophied lake ecosystems is difficult due to feedback mechanisms that stabilize the trophically degraded state. Here, we show rapid recovery of a eutrophic stratified lake in response to multiple restoration that targeted the feedback mechanisms of high external and internal nutrient loads, lack of a trophic cascade, and lack of structured littoral habitats. Lake Tiefwarensee (Germany) was exposed to aluminium and calcium treatment and fisheries management over 5 years. Within this period, in-lake phosphorus concentrations declined by more than 80%, and transparency, zooplankton biomass and fish assemblage structure and biomass responded immediately and almost linearly to the reduction in phosphorus concentrations. Phytoplankton biomass and chlorophyll a (chl a) concentrations likewise decreased in response to restoration, but the declining trend was interrupted by one recovery year with unusually high phytoplankton biomasses. The zooplankton:phytoplankton biomass ratio and the chl a:phosphorus ratio approached values observed in other stratified lakes during natural recovery from eutrophication. The slow response of Tiefwarensee to the reduction of external load, and the quick response to the chemical treatment suggest that the disruption of internal P recycling and loading was the decisive restoration measure in Tiefwarensee. The external load reduction was a necessary but not sufficient measure, at least in the short-term, whereas the low-effort fisheries management was of minor importance. A comparison with other case studies confirms that measures aiming to inactivate phosphorus are the most efficient approaches to restore stratified lakes in the short-term, but a shift to a permanent near-pristine state is possible only by additional P input control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aku PMK, Rudstam LG, Tonn WM. 1997. Impact of hypolimnetic oxygenation on the vertical distribution of cisco (Coregonus artedi) in Amisk Lake, Alberta. Can J Fish Aquat Sci 54:2182–95

    Article  Google Scholar 

  • Anderson MA. 2004. Impacts of metal salt addition on the chemistry of Lake Elsinore, California: 2. Calcium salts. Lake Res Manag 20:270–9

    CAS  Google Scholar 

  • Appelberg M. 2000. Swedish standard methods for sampling freshwater fish with multi-mesh gillnets. Fiskeriverket Inf 1:1–32

    Google Scholar 

  • Asplund T, Cook CE. 1997. Effects of motorboats on submerged aquatic macrophytes. Lake Res Manag 13:1–12

    Google Scholar 

  • Balk H, Lindem T. 2005. Sonar4 and Sonar5-Pro post-processing system Manual version 5.9.5. Oslo: University of Oslo

    Google Scholar 

  • Benndorf J. 1987. Food web manipulation without nutrient control: a useful strategy in lake restoration? Schweiz Z Hydrol 49:237–48

    Article  CAS  Google Scholar 

  • Benndorf J. 1990. Conditions for effective biomanipulation; conclusions derived from whole-lake experiments in Europe. Hydrobiologia 200–201:187–203

    Article  Google Scholar 

  • Benndorf J, Böing W, Koop J, Neubauer I. 2002. Top-down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshw Biol 47:2282–95

    Article  Google Scholar 

  • Bergman E, Hansson LA, Persson A, Strand J, Romare P, Enell M, Graneli W, Svensson JM, Hamrin SF, Cronberg G, Andersson G, Bergstrand E. 1999. Synthesis of theoretical and empirical experiences from nutrient and cyprinid reductions in Lake Ringsjon. Hydrobiologia 404:145–56

    Article  Google Scholar 

  • Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbricht-Ilkowska A, Kurasawa H, Larsson P, Weglenska T. 1976. A review of some problems in zooplankton production studies. Norw J Zool 24:419–56

    Google Scholar 

  • Bryhn AC, Hakanson L. 2007. A comparison of predictive phosphorus load-concentration models for lakes. Ecosystems 10:1084–99

    Article  CAS  Google Scholar 

  • Carpenter SR. 2003. Regime shifts in lake ecosystems: pattern and variation. Oldendorf: International Ecology Institute

    Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–68

    Article  Google Scholar 

  • Carpenter SR, Cottingham KL. 1997. Resilience and restoration of lakes. Conserv Ecol (online) 1:http://www.consecol.org/vol1/iss1/art2

  • Carpenter SR, Kitchell JF, Hodgson JR. 1985. Cascading trophic interactions and lake productivity. BioScience 35:634–9

    Article  Google Scholar 

  • Carpenter SR, Ludwig D, Brock WA. 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–71

    Article  Google Scholar 

  • Carvalho L, Beklioglu M, Moss B. 1995. Changes in a deep lake following sewage diversion—a challenge to the orthodoxy of external phosphorus control as a restoration strategy. Freshw Biol 34:399–410

    Article  Google Scholar 

  • Cooke GD, Welch EB, Peterson SA, Nichols SA. 2005. Restoration and management of lakes and reservoirs. Boca Raton: Taylor & Francis

    Google Scholar 

  • Cronberg G. 1999. Qualitative and quantitative investigations of phytoplankton in Lake Ringsjön, Sweden. Hydrobiologia 404:27–40

    Article  Google Scholar 

  • Deppe T, Ockenfeld K, Meybohm A, Opitz M, Benndorf J. 1999. Reduction of Microcystis blooms in a hypertrophic reservoir by a combined ecotechnological strategy. Hydrobiologia 409:31–8

    Article  Google Scholar 

  • Diekmann M, Brämick U, Lemcke R, Mehner T. 2005. Habitat-specific fishing revealed distinct indicator species in German lowland lake fish communities. J Appl Ecol 42:901–9

    Article  Google Scholar 

  • Dittrich M, Koschel R. 2002. Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 469:49–57

    Article  CAS  Google Scholar 

  • Dunalska JA, Wisniewski G, Mientki C. 2007. Assessment of multi-year (1956–2003) hypolimnetic withdrawal from Lake Kortowskie, Poland. Lake Res Manag 23:377–87

    Google Scholar 

  • Edmondson WT. 1970. Phosphorus, nitrogen, and algae in Lake Washington after diversion of sewage. Science 169:690–1

    Article  PubMed  CAS  Google Scholar 

  • Field KM, Prepas EE. 1997. Increased abundance and depth distribution of pelagic crustacean zooplankton during hypolimnetic oxygenation in a deep, eutrophic Alberta lake. Can J Fish Aquat Sci 54:2146–56

    Article  Google Scholar 

  • Foy RH. 1986. Suppression of phosphorus release from lake-sediments by the addition of nitrate. Water Res 20:1345–51

    Article  CAS  Google Scholar 

  • Garcia X-F, Diekmann M, Brämick U, Lemcke R, Mehner T. 2006. Correlations between type-indicator fish species and lake productivity in German lowland lakes. J Fish Biol 68:1144–57

    Article  Google Scholar 

  • Genkai-Kato M, Carpenter SR. 2005. Eutrophication due to phosphorus recycling in relation to lake morphometry, temperature, and macrophytes. Ecology 86:210–9

    Article  Google Scholar 

  • Haney JF, Hall DJ. 1973. Sugar-coated Daphnia: a preservation technique for Cladocera. Limnol Oceanogr 18:331–3

    Google Scholar 

  • Hanson JM, Leggett WC. 1982. Empirical prediction of fish biomass and yield. Can J Fish Aquat Sci 39:257–63

    Article  Google Scholar 

  • Hansson LA, Annadotter H, Bergman E, Hamrin SF, Jeppesen E, Kairesalo T, Luokkanen E, Nilsson PA, Søndergaard M, Strand J. 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems 1:558–74

    Article  Google Scholar 

  • Hepperle D, Schmidt-Halewicz SE. 2000. Opticount©. A software tool for the enumeration and biomass determination of plankton organisms and other particles. Win32-Version: http://science.do-mix.de

  • Horppila J, Peltonen H, Malinen T, Luokkanen E, Kairesalo T. 1998. Top-down or bottom-up effects by fish: Issues of concern in biomanipulation of lakes. Restor Ecol 6:20–8

    Article  Google Scholar 

  • James WF, Barko JW, Taylor WD. 1991. Effects of alum treatment on phosphorus dynamics in a north-temperate reservoir. Hydrobiologia 215:231–41

    Article  CAS  Google Scholar 

  • Jeppesen E, Jensen JP, Jensen C, Faafeng B, Hessen DO, Søndergaard M, Lauridsen T, Brettum P, Christoffersen K. 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6:313–25

    Article  CAS  Google Scholar 

  • Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Hilt S, Kangur K, Köhler J, Lammens EHHR, Lauridsen TL, Manca M, Miracle MR, Moss B, Noges P, Persson G, Phillips G, Portielje R, Schelske CL, Straile D, Tatrai I, Willen E, Winder M. 2005. Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50:1747–71

    Article  CAS  Google Scholar 

  • Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K. 1997. The structuring role of submerged macrophytes in lakes. New York: Springer

    Google Scholar 

  • Kasprzak P. 1984. Bestimmung des Körperkohlenstoffes von Planktoncrustaceen. Limnologica 15:191–4

    Google Scholar 

  • Kasprzak P, Koschel R, Krienitz L, Gonsiorczyk T, Mehner T, Benndorf J, Hülsmann S, Schultz H, Wagner A. 2007. Reduction of nutrient loading and biomanipulation as tools in water quality management: long-term observations on Bautzen Reservoir and Feldberger Haussee (Germany). Lake Res Manag 23:410–27

    Google Scholar 

  • Koschel R, Casper P, Gonsiorczyk T, Rossberg R, Wauer G. 2006. Hypolimnetic Al- and CaCO3-treatments and aeration for restoration of a stratified eutrophic hardwater lake in Germany. Verh Int Ver Limnol 29:2165–71

    CAS  Google Scholar 

  • Krienitz L, Kasprzak P, Koschel R. 1996. Long term study on the influence of eutrophication, restoration and biomanipulation on the structure and development of phytoplankton communities in Feldberger Haussee (Baltic Lake District, Germany). Hydrobiologia 330:89–110

    Article  CAS  Google Scholar 

  • Larsen DP, Schults DW, Malueg KW. 1981. Summer internal phosphorus supplies in Shagawa Lake, Minnesota. Limnol Oceanogr 26:740–53

    Article  CAS  Google Scholar 

  • Lathrop RC. 2007. Perspectives on the eutrophication of the Yahara lakes. Lake Res Manag 23:345–65

    Google Scholar 

  • Lathrop RC, Carpenter SR, Stow CA, Soranno PA, Panuska JC. 1998. Phosphorus loading reductions needed to control blue-green algal blooms in Lake Mendota. Can J Fish Aquat Sci 55:1169–78

    Article  CAS  Google Scholar 

  • Lathrop RC, Johnson BM, Johnson TB, Vogelsang MT, Carpenter SR, Hrabic TR, Kitchell JF, Magnuson JJ, Rudstam LG, Stewart RS. 2002. Stocking piscivores to improve fishing and water clarity: a synthesis of the Lake Mendota biomanipulation project. Freshw Biol 47:2410–24

    Article  Google Scholar 

  • Lewandowski J, Schauser I, Hupfer M. 2003. Long term effects of phosphorus precipitations with alum in hypereutrophic Lake Susser See (Germany). Water Res 37:3194–204

    Article  PubMed  CAS  Google Scholar 

  • Love RH. 1971. Dorsal aspect of an individual fish. J Acoust Soc Am 49:816–23

    Article  Google Scholar 

  • Lund JWG, Kipling C, LeCren ED. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–70

    Article  Google Scholar 

  • Mehner T, Arlinghaus R, Berg S, Dörner H, Jacobsen L, Kasprzak P, Koschel R, Schulze T, Skov C, Wolter C, Wysujack K. 2004. How to link biomanipulation and sustainable fisheries management: a step-by-step guideline for lakes of the European temperate zone. Fish Manag Ecol 11:261–75

    Article  Google Scholar 

  • Mehner T, Benndorf J, Kasprzak P, Koschel R. 2002. Biomanipulation of lake ecosystems: successful applications and expanding complexity in the underlying science. Freshw Biol 47:2453–65

    Article  Google Scholar 

  • Mehner T, Diekmann M, Brämick U, Lemcke R. 2005. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human use intensity. Freshw Biol 50:70–85

    Article  CAS  Google Scholar 

  • Mehner T, Padisak J, Kasprzak P, Koschel R, Krienitz L. 2008. A test of food web hypotheses by exploring time series of fish, zooplankton and phytoplankton in an oligo-mesotrophic lake. Limnologica. doi:10.1016/j.limno.2008.05.001

  • Nürnberg GK. 1984. The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnol Oceanogr 29:111–24

    Google Scholar 

  • Nürnberg GK. 2007. Lake responses to long-term hypolimnetic withdrawal treatments. Lake Res Manag 23:388–409

    Google Scholar 

  • Persson L, Diehl S, Johansson L, Andersson G, Hamrin SF. 1991. Shifts in fish communities along the productivity gradient of temperate lakes—patterns and the importance of size-structured interactions. J Fish Biol 38:281–93

    Article  Google Scholar 

  • Persson L, Greenberg LA. 1990. Juvenile competitive bottlenecks: the perch (Perca fluviatilis)-roach (Rutilus rutilus) interaction. Ecology 71:44–56

    Article  Google Scholar 

  • Reitzel K, Hansen J, Andersen FO, Hansen KS, Jensen HS. 2005. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment. Environ Sci Technol 39:4134–40

    Article  PubMed  CAS  Google Scholar 

  • Robertson DM, Goddard GL, Helsel DR, MacKinnon KL. 2000. Rehabilitation of Delavan Lake, Wisconsin. Lake Res Manag 16:155–76

    CAS  Google Scholar 

  • Rydin E, Huser B, Welch EB. 2000. Amount of phosphorus inactivated by alum treatments in Washington lakes. Limnol Oceanogr 45:226–30

    CAS  Google Scholar 

  • Sandgren CD. 1991. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In: Sandgren CD, Ed. Growth and reproductive strategies of freshwater phytoplankton. New York: Cambridge University Press, pp 9–104

    Google Scholar 

  • Sas H. 1989. Lake restoration by reducing of nutrient loading: expectations, experiments, extrapolations. St. Augustin: Academia Verlag Richarz

    Google Scholar 

  • Schauser I, Chorus I. 2007. Assessment of internal and external lake restoration measures for two Berlin lakes. Lake Res Manag 23:366–76

    Google Scholar 

  • Skov C, Nilsson PA. 2007. Evaluating stocking of YOY pike Esox lucius as a tool in the restoration of shallow lakes. Freshw Biol 52:1834–45

    Article  Google Scholar 

  • Smeltzer E, Kirn RA, Fiske S. 1999. Long-term water quality and biological effects of alum treatment of Lake Morey, Vermont. Lake Res Manag 15:173–84

    Article  CAS  Google Scholar 

  • Sommer U. 1991. Growth and survival strategies of planktonic diatoms. In: Sandgren CD, Ed. Growth and reproductive strategies of freshwater phytoplankton. New York: Cambridge University Press, pp 227–60

    Google Scholar 

  • Søndergaard M, Jensen A, Jeppesen E. 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509:135–45

    Article  Google Scholar 

  • Søndergaard M, Jeppesen E, Jensen JP. 2000. Hypolimnetic nitrate treatment to reduce internal phosphorus loading in a stratified lake. Lake Res Manag 16:195–204

    CAS  Google Scholar 

  • Søndergaard M, Jeppesen E, Lauridsen TL, Skov C, Van Nes EH, Roijackers R, Lammens E, Portielje R. 2007. Lake restoration: successes, failures and long-term effects. J Appl Ecol 44:1095–105

    Article  CAS  Google Scholar 

  • Suding KN, Gross KL, Houseman GR. 2004. Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19:46–53

    Article  PubMed  Google Scholar 

  • Vadeboncoeur Y, McCann KS, VanderZanden MJ, Rasmussen JB. 2005. Effects of multi-chain omnivory on the strength of trophic control in lakes. Ecosystems 8:682–93

    Article  Google Scholar 

  • Vander Zanden MJ, Vadeboncoeur Y. 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83:2152–61

    Google Scholar 

  • Vanni MJ, Layne CD. 1997. Nutrient recycling and herbivory as mechanisms in the “top-down” effect of fish on algae in lakes. Ecology 78:21–40

    Google Scholar 

  • Vollenweider RA. 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem Ist Ital Idrobiol 33:53–83

    CAS  Google Scholar 

  • Welch EB, Cooke GD. 1999. Effectiveness and longevity of phosphorus inactivation with alum. Lake Res Manag 15:5–27

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Lake restoration and research were financed by the Environmental Ministry of the German Federal State of Mecklenburg-Vorpommern and the city of Waren (Müritz). Technical support during sampling and raw sample analyses was given by J. Dalchow, U. Mallok, R. Rossberg, M. Sachtleben, R. Degebrodt, C. Helms, T. Rohde and A. Türck. K. Kalies counted the phytoplankton and zooplankton samples. Brett Johnson, Erik Jeppesen as subject editor and four anonymous reviewers gave many insightful comments which helped improve the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mehner.

Additional information

Author Contributions: T.M. designed the study, analyzed data, and wrote the paper. M.D. analyzed data. T.G. analyzed data. P.K. designed the study and analyzed data. R.K. conceived of and designed the study. L.K, M.R. and M.S. analyzed data. G.W. contributed new methods, analyzed data and wrote parts of the paper. All authors contributed to writing the final version.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehner, T., Diekmann, M., Gonsiorczyk, T. et al. Rapid Recovery from Eutrophication of a Stratified Lake by Disruption of Internal Nutrient Load. Ecosystems 11, 1142–1156 (2008). https://doi.org/10.1007/s10021-008-9185-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-008-9185-5

Keywords

Navigation