Skip to main content

Advertisement

Log in

Soil Organic Carbon and Water Retention after Conversion of Grasslands to Pine Plantations in the Ecuadorian Andes

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Tree plantations in the high elevations of the tropics constitute a growing land use, but their effect on ecosystem processes and services is not well known. We examined changes in soil organic carbon (C) and water retention in a chronosequence of Pinus radiata stands planted in páramo grasslands in Cotopaxi province, Ecuador. Water retention at 10, 33, and 1,500 kPa declined with stand age, with soils in the oldest pine stands retaining 39%, 55%, and 63% less water than grassland soils at the three pressures tested. Soil organic C in the 0–10-cm depth also declined with stand age, from 5.0 kg m−2 in grasslands to 3.5 kg m−2 in 20–25-year-old pine stands (P < 0.001); at greater depth in the A horizon, C contents decreased from 2.8 to 1.2 kg m−2 (P = 0.047). There were no significant differences among age classes in the AC and C horizons (P = 0.15 and P = 0.34, respectively), where little or no weathering of the primary material has occurred. Inputs of C may be affected by the significantly higher carbon–nitrogen (C:N) ratio of the litter under older pine stands (P = 0.005), whereas outputs are influenced by substrate quality as well as soil environmental factors. Soil ratios at the 0–10 cm depth were significantly higher in grasslands and young pine stands (P < 0.001), whereas carbon–phosphorous (C:P) ratios at 0–10-cm depth followed a similar but not significant trend. However, there was no significant difference in short-term decomposition rates (P = 0.60) when the soils were incubated under uniform temperature and moisture conditions. In páramo ecosystems, where high soil moisture plays an important role in retarding decomposition and driving high C storage, the loss of water retention after afforestation may be the dominant factor in C loss. These results suggest that soil C buildup and water retention respond rapidly to changes in biota and need to be assessed with regard to implications for C sequestration and watershed management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • DH Alban (1982) ArticleTitleEffects of nutrient accumulation by aspen, spruce, and pine on soil properties Soil Sci Soc Am J 46 853–60 Occurrence Handle1:CAS:528:DyaL38XlvVWjsLc%3D Occurrence Handle10.2136/sssaj1982.03615995004600040037x

    Article  CAS  Google Scholar 

  • F Barberi M Coltelli A Frullani M Rosi E Almeida (1995) ArticleTitleChronology and dispersal characteristics of recently (last 5000 years) erupted tephra of Cotopaxi (Ecuador): implications for long-term eruptive forecasting J Volcanol Geotherm Res 69 217–39 Occurrence Handle10.1016/0377-0273(95)00017-8 Occurrence Handle1:CAS:528:DyaK28XhtlKjtbY%3D

    Article  CAS  Google Scholar 

  • MA Bashkin D Binkley (1998) ArticleTitleChanges in soil carbon following afforestation in Hawaii Ecology 79 IssueID3 828–33

    Google Scholar 

  • JM Bosch JD Hewlett (1982) ArticleTitleA review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration J Hydrol 55 3–23 Occurrence Handle10.1016/0022-1694(82)90117-2

    Article  Google Scholar 

  • S Brown AE Lugo J Chapman (1986) ArticleTitleBiomass of tropical tree plantations and its implications for the global carbon budget Can J For Res 16 390–94

    Google Scholar 

  • OA Chadwick EF Kelly DM Merritts RG Amundson (1994) ArticleTitleCarbon dioxide consumption during soil development Biogeochemistry 24 115–27 Occurrence Handle10.1007/BF00003268 Occurrence Handle1:CAS:528:DyaK2cXmtVCgtLw%3D

    Article  CAS  Google Scholar 

  • IH Chapela LJ Osher TR Horton MR Henn (2001) ArticleTitleEctomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion Soil Biol Biochem 33 1733–740 Occurrence Handle10.1016/S0038-0717(01)00098-0 Occurrence Handle1:CAS:528:DC%2BD3MXotFOlurk%3D

    Article  CAS  Google Scholar 

  • NL Christensen AM Bartuska JH Brown S Carpenter C D’Antonio R Francis JF Franklin (1996) ArticleTitleThe report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management Ecol Appl 6 IssueID3 665–91

    Google Scholar 

  • A Cortés C Chamorro A Vega (1990) ArticleTitleCambios en el suelo por la implantación de praderas, coniferas y eucaliptos en un área aledaña al Embalse del Neusa (Páramo de Guerrero) Investigaciones Subdirección Agrológica, IGAC 101 14

    Google Scholar 

  • E Cuevas S Brown AE Lugo (1991) ArticleTitleAbove- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest Plant Soil 135 257–68

    Google Scholar 

  • R Dahlgren S Shoji M Nanzyo (1993) Mineralogical characteristics of volcanic ash soils S Shoji M Nanzyo RA Dahlgren (Eds) Volcanic ash soils: genesis, properties, and utilization Elsevier Amsterdam 101–43

    Google Scholar 

  • MJ Duncan (1995) ArticleTitleHydrological impacts of converting pasture and gorse to pine plantation, and forest harvesting, Nelson, New Zealand J Hydrol 34 IssueID1 15–41

    Google Scholar 

  • PJ Dye (1996) ArticleTitleClimate, forest and streamflow relationships in South African afforested catchments Commonwealth For Rev 75 IssueID1 31–38

    Google Scholar 

  • BD Fahey AJ Watson (1991) ArticleTitleHydrological impacts of converting tussock grassland to pine plantation, Otago, New Zealand J Hydrol N Z 30 IssueID1 1–15

    Google Scholar 

  • LB Guo RM Gifford (2002) ArticleTitleSoil carbon stocks and land use change: a meta analysis Global Change Biol 8 345–60 Occurrence Handle10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  • CD Hamilton (1965) ArticleTitleChanges in the soil under Pinus radiata Aust For 29 275–89

    Google Scholar 

  • R Hofstede (1995) ArticleTitleThe effects of grazing and burning on soil and plant nutrient concentrations in Colombian páramo grasslands Plant Soil 173 111–32 Occurrence Handle1:CAS:528:DyaK2MXntlWisb8%3D

    CAS  Google Scholar 

  • R Hofstede (1999) El páramo como espacio para la fijación de carbono atmosférico G Medina P Mena (Eds) El páramo como espacio de mitigación de carbono atmosférico Quito Quito: Grupo de Trabajo en Páramos/Abya-Yala 3–6

    Google Scholar 

  • RGM Hofstede JP Groenendijk R Coppus JC Fehse J Sevink (2002) ArticleTitleImpact of pine plantations on soils and vegetation in the Ecuadorian high Andes Mountain Res Develop 22 IssueID2 159–67

    Google Scholar 

  • [INAMHI] Instituto Nacional de Meteorología e Hidrología. 2001. Series de datos meteorológicos: Cotopaxi–Minitrak, 1930–1999. Quito: INAMHI

  • RB Jackson HJ Schenk EG Jobbáby J Canadell GD Colello RE Dickinson CB Field (2000) ArticleTitleBelowground consequences of vegetation change and their treatment in models Ecol Appl 10 IssueID2 470–83

    Google Scholar 

  • RB Jackson JL Banner EG Jobbágy WT Pockman DH Walls (2002) ArticleTitleEcosystem carbon loss with woody plant invasion of grasslands Nature 418 623–26 Occurrence Handle10.1038/nature00910 Occurrence Handle1:CAS:528:DC%2BD38XlvVylt7c%3D Occurrence Handle12167857

    Article  CAS  PubMed  Google Scholar 

  • H Jenny (1941) Factors of soil formation: a system of quantitative pedology McGraw-Hill New York 281

    Google Scholar 

  • DW Johnson (1992) ArticleTitleEffects of forest management on soil carbon storage Water Air and Soil Pollut 64 83–120 Occurrence Handle1:CAS:528:DyaK38Xks12jsLw%3D

    CAS  Google Scholar 

  • M Joshi K Bargali SS Bargali (1997) ArticleTitleChanges in physico-chemical properties and metabolic activity of soil in poplar plantations replacing natural broad-leaved forests in Kumaun Himalaya J Arid Environ 35 161–69

    Google Scholar 

  • A Jug F Makeschin KE Rehfuess C Hofmann-Schielle (1999) ArticleTitleShort-rotation plantations of balsam poplars, aspen, and willows on former arable land in the Federal Republic of Germany. III Soil ecological effects. For Ecol Manage 121 IssueID1–2 85–99 Occurrence Handle10.1016/S0378-1127(98)00558-1

    Article  Google Scholar 

  • JP Kaye SC Resh MW Kaye RA Chimner (2000) ArticleTitleNutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees Ecology 81 IssueID12 3267–273

    Google Scholar 

  • RH Kelly IC Burke WK Lauenroth (1996) ArticleTitleSoil organic matter and nutrient availability responses to reduced plant inputs in shortgrass steppe Ecology 77 IssueID8 2516–527

    Google Scholar 

  • DC Le Maitre BW Wilgen ParticleVan RA Chapman DH McKelly (1996) ArticleTitleInvasive plants and water resources in the Western Cape Province, South Africa: modelling the consequences of a lack of management J Appl Ecol 33 161–72

    Google Scholar 

  • J Lips (1998) Geografía de la sierra andina ecuatoriana R Hofstede J Lips W Jongsma Y Sevink (Eds) Geografía, ecología y forestación de la Sierra alta del Ecuador: revisión de literatura Abya-Yala Abya-Yala 13–34

    Google Scholar 

  • J Lips R Hofstede (1998) Impactos ecológicos de plantaciones forestales R Hofstede J Lips W Jongsma Y Sevink (Eds) Geografía, ecología y forestación de la Sierra alta del Ecuador: revisión de literatura Abya-Yala Abya-Yala 117–26

    Google Scholar 

  • B Lundgren (1978) Soil conditions and nutrient cycling under natural forests and forest plantations in Tanzania highlands Departament of Forest Soils, Swedish University of Agricultural Sciences Uppsala

    Google Scholar 

  • JL Luteyn (1992) Páramos: why study them? H Balslev JL Luteyn (Eds) Páramo: an Andean ecosystem under human influence Academic Press London 1–15

    Google Scholar 

  • M Nanzyo S Shoji R Dahlgren (1993) Physical characteristics of volcanic ash soils S Shoji M Nanzyo RA Dahlgren (Eds) Volcanic ash soils: genesis, properties, and utilization Elsevier Amsterdam 189–207

    Google Scholar 

  • S Ohta (1990) ArticleTitleInitial soil changes associated with afforestation with Acacia auriculiformis and Pinus kesiya on denuded grasslands of the Pantabangan area, Central Luzon, the Philippines Soil Sci Plant Nutr 36 IssueID4 633–43

    Google Scholar 

  • SJ Pauker TR Seastedt (1996) ArticleTitleEffects of mobile tree islands on soil carbon storage in tundra ecosystems Ecology 77 IssueID8 2563–67

    Google Scholar 

  • KI Paul PJ Polglase JG Nyakuengama PK Khanna (2002) ArticleTitleChange in soil carbon following afforestation For Ecol Manage 168 241–57 Occurrence Handle10.1016/S0378-1127(01)00740-X

    Article  Google Scholar 

  • P Podwojewski (1999) ArticleTitleLos suelos de las altas tierras andinas: los páramos del Ecuador Bol Soc Ecuator Cie Suelo 18 9–14

    Google Scholar 

  • P Podwojewski J Poulenard (2000) La degradación de los suelos de los páramos PA Mena C Josse G Medina (Eds) Los suelos del páramo Grupo de Trabajo en Páramos/Abya-Yala Quito 27–36

    Google Scholar 

  • J Poulenard P Podwojewski JL Jeanneau J Collinet (2001) ArticleTitleRunoff and soil erosion under rainfall simulation of Andisols from the Ecuadorian páramo: effects of tillage and burning Catena 45 185–207 Occurrence Handle10.1016/S0341-8162(01)00148-5

    Article  Google Scholar 

  • SA Quideau OA Chadwick SE Trumbore JL Johnson-Maynard RC Graham MA Anderson (2001) ArticleTitleVegetation control on soil organic matter dynamics Org Geochem 32 IssueID2 247–52 Occurrence Handle10.1016/S0146-6380(00)00171-6 Occurrence Handle1:CAS:528:DC%2BD3MXit12gtro%3D

    Article  CAS  Google Scholar 

  • SC Resh D Binkley JA Parrotta (2002) ArticleTitleGreater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species Ecosystems 5 217–31 Occurrence Handle10.1007/s10021-001-0067-3 Occurrence Handle1:CAS:528:DC%2BD38Xks1Omu7c%3D

    Article  CAS  Google Scholar 

  • DD Richter D Markewitz CG Wells HL Allen R April PR Heine B Urrego (1994) ArticleTitleSoil chemical change during three decades in an old-field loblolly pine (Pinus taeda L.) ecosystem Ecology 75 IssueID5 1463–73

    Google Scholar 

  • WH Schlesinger (1997) Biogeochemistry: an analysis of global change EditionNumber2nd Academic Press San Diego p. 588

    Google Scholar 

  • EAG Schuur OA Chadwick PA Matson (2001) ArticleTitleCarbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests Ecology 82 IssueID11 3182–96

    Google Scholar 

  • NA Scott KR Tate J Ford-Robertson DJ Giltrap C Tattersall Smith (1999) ArticleTitleSoil carbon storage in plantation forests and pastures: land use change implications Tellus 51 IssueID2 326–35 Occurrence Handle10.1034/j.1600-0889.1999.00015.x

    Article  Google Scholar 

  • Smith J, Scherr SJ. 2002. Forest carbon and local livelihoods: assessment of opportunities and policy recommendations. CIFOR occasional paper no. 37. Jakarta (Indonesia): Center for International Forestry Research. 45 p

  • RS Swift (2001) ArticleTitleSequestration of carbon by soil Soil Sci 166 IssueID11 858–71 Occurrence Handle10.1097/00010694-200111000-00010 Occurrence Handle1:CAS:528:DC%2BD3MXovVert7w%3D

    Article  CAS  Google Scholar 

  • MS Torn SE Trumbore OA Chadwick PM Vitousek DM Hendricks (1997) ArticleTitleMineral control of soil organic carbon storage and turnover Nature 389 170–73 Occurrence Handle10.1038/38260 Occurrence Handle1:CAS:528:DyaK2sXmtVSrsr8%3D

    Article  CAS  Google Scholar 

  • J Turner J Kelly (1985) ArticleTitleEffect of radiata pine on soil chemical characteristics For Ecol Manage 11 257–70 Occurrence Handle10.1016/0378-1127(85)90104-5

    Article  Google Scholar 

  • J Turner MJ Lambert (1988) ArticleTitleSoil properties as affected by Pinus radiata plantations N Z J For Sci 18 IssueID1 77–91

    Google Scholar 

  • K Wada (1985) ArticleTitleThe distinctive properties of Andosols Adv Soil Sci 2 174–223

    Google Scholar 

  • K Wada (1989) Allophane and imogolite JB Dixon SB Weed (Eds) Minerals in soil environments Soil Science Society of America Madison (WI) 1051–87

    Google Scholar 

  • JH Zar (1999) Biostatistical analysis EditionNumber4th Prentice Hall Upper Saddle River NJ 663

    Google Scholar 

  • YL Zinn DVS Resck JE da Silva (2002) ArticleTitleSoil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil For Ecol Manage 166 285–294 Occurrence Handle10.1016/S0378-1127(01)00682-X

    Article  Google Scholar 

Download references

Acknowledgements

We thank Juan Pablo Fontecilla and Aglomerados Cotopaxi, S.A., for access to the plantation and assistance in carrying out the study. We thank Mike Ryan for conducting the laboratory incubations and breg Butters for help with water retention analysis. Thanks to Tom Veblen and balo Medina for support throughout the project. We appreciate the effort of two anonymous reviewers who helped to improve this manuscript. This material is based on work supported by the National Science Foundation under grant no. 0002352, the University of Colorado Graduate School, the University of Colorado Developing Areas Research and Training Program, and the Colorado State University Agricultural Experimental Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen A. Farley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farley, K.A., Kelly, E.F. & Hofstede, R.G.M. Soil Organic Carbon and Water Retention after Conversion of Grasslands to Pine Plantations in the Ecuadorian Andes. Ecosystems 7, 729–739 (2004). https://doi.org/10.1007/s10021-004-0047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-004-0047-5

Keywords

Navigation