Skip to main content

Advertisement

Log in

PVDF-HFP/LLZTO composite electrolytes with UV cure for solid-state lithium rechargeable batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Significant ultraviolet (UV) technology was used to create a new composite polymer electrolyte (CPE) membrane composed of poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP), benzophenone (Bp), and varying amounts of highly ion-conducting Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles. In lithium metal batteries, the CPE membranes demonstrated improved mechanical properties as well as superior electrochemical performances. CPE-15wt% LLZTO typically demonstrated the highest ionic conductivity (σ = 3.7 × 10−3 S/cm) at room temperature, a high Li-transference (t+ = 0.79), and a wider electrochemical stability window (ESW) above 5 V, as well as good mechanical strength (8.2 MPa). More importantly, the CPE-15wt% LLZTO membrane inhibits Li dendrite expansion in Li symmetric cells and exhibits long-term cyclic stability with a current density of 3 mA/cm2 over 1150 h for Li/CPE-15wt% LLZTO/Li. The current study demonstrates that a UV-irradiated CPE membrane can be a promising electrolyte for next-generation lithium-metallic batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. https://doi.org/10.1038/451652a

    Article  CAS  PubMed  Google Scholar 

  3. Wu H, Han H, Yan Z, Zhao Q, Chen J (2022) Chloride solid-state electrolytes for all-solid-state lithium batteries. J Solid State Electrochem 26(9):1791–1808. https://doi.org/10.1007/s10008-022-05230-x

    Article  CAS  Google Scholar 

  4. York M, Larson K, Harris KC, Carmona E, Albertus P, Sharma R, Noked M, Strauss E, Ragones H, Golodnitsky D (2022) Recent advances in solid-state beyond lithium batteries. J Solid State Electrochem 26(9):1851–1869. https://doi.org/10.1007/s10008-022-05223-w

  5. Wang J, Wang Z, Ni J, Li L (2022) Electrospun materials for batteries moving beyond lithium-ion technologies. Electrochem Energy Rev 5(2):211–241. https://doi.org/10.1007/s41918-021-00103-9

    Article  CAS  Google Scholar 

  6. Peng Z, Zhao N, Zhang Z-G, Wan H, Lin H, Liu M, Shen C, He H-Y, Guo X-X, Zhang J-G, Wang D-Y (2017) Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains. Nano Energy 39:662–672. https://doi.org/10.1016/j.nanoen.2017.07.052

    Article  CAS  Google Scholar 

  7. Lu Q, He Y-B, Yu Q, Li B, Kaneti YV, Yao Y, Kang F, Yang Q-H (2017) Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater 29:1604460. https://doi.org/10.1002/adma.201604460

    Article  CAS  Google Scholar 

  8. Zhu M, Wu J, Zhong W-H, Lan J, Sui G, Yang (2018) A biobased composite gelpolymer electrolyte with functions of lithium dendrites suppressing and manganeseions trapping. Adv Energy Mater 8:1702561. https://doi.org/10.1002/aenm.201702561

  9. Li M, Li H, Lan J-L, Yu Y, Du Z, Yang X (2018) Integrative preparation of mesoporous epoxy resin–ceramic composite electrolytes with multilayer structure for dendrite-free lithium metal batteries. J Mater Chem A 6:19094–19106

    Article  CAS  Google Scholar 

  10. Shen Y, Zhang Y, Han S, Wang J, Peng Z, Chen L (2018) Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes. Joule 2:1674–1689. https://doi.org/10.1016/j.joule.2018.06.021

    Article  CAS  Google Scholar 

  11. Zu C, Yu H, Li H (2021) Enabling the thermal stability of solid electrolyte interphase in li‐ion battery. InfoMat 3(6):648–661. https://doi.org/10.1002/inf2.12190

  12. Hao L, Li M, Siyal SH, Zhu M, Lan J-L, Sui G, Yu Y, Zhong W, Yang X (2018) A sandwich structure polymer/polymer-ceramics/polymer gel electrolytes for the safe, stable cycling of lithium metal batteries. J Membr Sci 555:169–176. https://doi.org/10.1016/j.memsci.2018.03.038

    Article  CAS  Google Scholar 

  13. Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Bri Polymer J 7:319–327. https://doi.org/10.1002/pi.4980070505

  14. Liew CW, Durairaj R, Ramesh S (2014) Rheological studies of PMMA-PVC based polymer blend electrolytes with LiTFSI as doping salt. PLoS One 9:e102815. https://pubmed.ncbi.nlm.nih.gov/25051241

  15. Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10:439–448. https://doi.org/10.1002/(SICI)1521-4095(199804)10:6%3C439::AID-ADMA439%3E3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  16. Vignarooban K, Dissanayake M, Albinsson I, Mellander BE (2014) Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 266:25–28 https://www.sciencedirect.com/science/article/pii/S0167273814003361

  17. Lin C-W, Hung C-L, Venkateswarlu M , Hwang BJ (2005) Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. J Power Sources 146:397–401. https://www.sciencedirect.com/science/article/abs/pii/S0378775305003940

  18. Lin D, Liu W, Liu Y, Lee HR, Hsu P-C, Liu K, Cui Y (2016) High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett 16:459–465. https://doi.org/10.1021/acs.nanolett.5b04117

    Article  CAS  PubMed  Google Scholar 

  19. Yang T, Zheng J, Cheng Q, Hu YY, Chan CK (2017) Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl Mater Interfaces 9:21773–21780. https://doi.org/10.1021/acsami.7b03806

    Article  CAS  PubMed  Google Scholar 

  20. Chamaani A, Safa M, Chawla N, El-Zahab B (2017) composite gel polymer electrolyte for improved cyclability in lithium-oxygen batteries. ACS Appl Mater Interfaces 9:33819–33826. https://doi.org/10.1021/acsami.7b08448

    Article  CAS  PubMed  Google Scholar 

  21. Tong Y, Chen L, Chen Y, He X (2012) Enhanced conductivity of novel star branched liquid crystalline copolymer based on poly(ethylene oxide) for solid polymer electrolytes. Appl Surf Sci 258:10095–10103. https://doi.org/10.1016/j.apsusc.2012.06.082

    Article  CAS  Google Scholar 

  22. Raghavan P, Manuel J, Zhao X-H, Kim DS, Ahn JH, Nah C (2011) Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J Power Sources 196:6742–6749. https://doi.org/10.1016/j.jpowsour.2010.10.089

    Article  CAS  Google Scholar 

  23. Zhu Y, Wang F, Liu L, Xiao S, Chang Z, Wu Y (2013) Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy Environ Sci 6:618–624. https://doi.org/10.1039/C2EE23564A

    Article  CAS  Google Scholar 

  24. Yu S, Chen L, Chen Y, Tong Y (2012) Microporous gel electrolytes based on amphiphilic poly(vinylidene fluoride-cohexafluoropropylene) for lithium batteries. Appl Surf Sci 258:4983–4989. https://doi.org/10.1016/j.apsusc.2012.01.146

    Article  CAS  Google Scholar 

  25. Shin WK, Cho J, Kannan AG, Lee YS, Kim DW (2016) Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci Rep 6:26332. https://doi.org/10.1038/srep26332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pal P, Ghosh A (2018) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim Acta 260:157–167. https://doi.org/10.1016/j.electacta.2017.11.070

    Article  CAS  Google Scholar 

  27. Put B, Philippe Vereecken M, Stesmans A (2018) On the chemistry and electrochemistry of LiPON breakdown. J Mater Chem A 6:4848–4859. https://doi.org/10.1039/C7TA07928A

    Article  CAS  Google Scholar 

  28. Xie H, Alonso JA, Li Y, Fernandez-Diaz MT (2011) Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Fernández-Díaz, J.B. Goodenough. Chem Mater 23:3587–3589. https://doi.org/10.1021/CM201671K

    Article  CAS  Google Scholar 

  29. Zhang J, Zang X, Wen H, Dong T, Chai J, Li Y, Chen B, Zhao J, Dong S, Ma J, Yue L, Liu Z, Guo X, Cui G, Chen L (2017) High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J Mater Chem A 5:4940–4948. https://doi.org/10.1039/C6TA10066J

    Article  CAS  Google Scholar 

  30. Jin Y, Liu K, Lang J, Zhuo D, Huang Z, Wang C-A, Wu H, Cui Y (2018) An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nature Energy 3:732–738. https://www.nature.com/articles/s41560-018-0198-9

  31. Key B, Schroeder DJ, Ingram BJ, Vaughey JT (2012) Chem Mater 24:287–293. https://doi.org/10.1038/s41560-018-0198-9

    Article  CAS  Google Scholar 

  32. Yi E-j, Yoon K-y, Jung H-A, Nakayama T, Ji M-J, Hwang H (2019) Fabrication and electrochemical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes by sol-gel method. Appl Surf Sci 437:622–626. https://doi.org/10.1016/j.apsusc.2018.12.202

    Article  CAS  Google Scholar 

  33. Wang X, Zhang Y, Zhang X, Liu T, Lin Y-H, Li L, Shen Y, Nan C-W (2018) Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl Mater Interfaces 10:24791–24798. https://doi.org/10.1021/acsami.8b06658

  34. Akkinepally B, Reddy IN, Ko TJ, Yoo K, Shim J (2022) Dopant effect on Li+ ion transport in NASICON-type solid electrolyte: Insights from molecular dynamics simulations and experiments. Ceram Int 48(9):12142–12151. https://doi.org/10.1016/j.ceramint.2022.01.075

    Article  CAS  Google Scholar 

  35. Reddy IN, Akkinepally B, Reddy CV, Sreedhar A, Ko TJ, Shim J (2020) A systematic study of annealing environment and Al dopant effect on NASICON-type LiZr2(PO4)3 solid electrolyte. Ionics 26:4287–4298. https://doi.org/10.1007/s11581-020-03622-5

    Article  CAS  Google Scholar 

  36. Fu K, Gong Y, Hitz GT, McOwen DW, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel G, Dai J, Liu B, Xie H, Yao Y, Wachsman ED, Hu L (2017) Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ Sci 10:1568–1575. https://doi.org/10.1039/C7EE01004D

    Article  CAS  Google Scholar 

  37. Goodenough JB, Singh P (2015) Review—solid electrolytes in rechargeable electrochemical cells. Electrochem Soc 162:A2387–A2392. https://doi.org/10.1149/2.0021514jes

    Article  CAS  Google Scholar 

  38. Cheng L, Wu CH, Jarry A, Chen W, Ye Y, Zhu J, Doeff M (2015) Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes. ACS App Mat Interfaces 7(32):17649–17655. https://doi.org/10.1021/acsami.5b02528

  39. Sharafi A, Yu S, Naguib M, Lee M, Ma C, Meyer HM, Nanda J, Chi M, Siegel DJ, Sakamoto J (2017) Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance. J Mater Chem A 5:13475–13487. https://doi.org/10.1039/C7TA03162A

    Article  CAS  Google Scholar 

  40. Ban X, Zhang W, Chen N, Sun C (2018) A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery. J Phys Chem C 122:9852–9858. https://doi.org/10.1021/acs.jpcc.8b02556

    Article  CAS  Google Scholar 

  41. Yu S, Schmohl S, Liu Z, Hoffmeyer M, Schön N, Hausen F, Tempel H, Kungl H, Wiemhöfer HD, Eichel RA (2019) Insights on layered hybrid solid electrolyte and its application in long lifespan high-voltage all–solid–state lithium battery. J Mater Chem A 7:3882–3894. https://doi.org/10.1039/c8ta11259b

    Article  CAS  Google Scholar 

  42. Fan L, Wei S, Li S, Li Q, Lu Y (2018) Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater 8:1702657. https://doi.org/10.1002/aenm.201702657

    Article  CAS  Google Scholar 

  43. Wang C, Yang Y, Liu X, Zhong H, Xu H, Xu Z, Shao H, Ding F (2017) Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl Mater Interfaces 9:13694–13702. https://doi.org/10.1021/acsami.7b00336

    Article  CAS  PubMed  Google Scholar 

  44. Ha HJ, Kwon YH, Kim JY, Lee SY (2011) A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery. Electrochim Acta 57:40–45. https://doi.org/10.1016/j.electacta.2011.03.101

    Article  CAS  Google Scholar 

  45. Liu K, Ding F, Lu Q, Liu J, Zhang Q, Liu X, Xu Q (2016) A novel plastic crystal composite polymer electrolyte with excellent mechanical bendability and electrochemical performance for flexible lithium-ion batteries. Solid State Ionics 289:1–8. https://doi.org/10.1016/j.ssi.2016.02.007

    Article  CAS  Google Scholar 

  46. Chen F, Yang D, Zha W, Zhu B, Zhang Y, Li J, Gu Y, Shen Q, Zhang L, Sadoway DR (2017) Solid polymer electrolytes incorporating cubic Li 7 La 3 Zr 2 O 12 for all-solid-state lithium rechargeable batteries. Electrochim Acta 258:1106–1114. https://doi.org/10.1016/j.electacta.2017.11.164

    Article  CAS  Google Scholar 

  47. Oh B, Jung WI, Kim DW, Rhee HW (2002) Preparation of UV curable gel polymer electrolytes and their electrochemical properties. Bull Korean Chem Soc 23:683–687. https://doi.org/10.1021/ja017359n

    Article  CAS  Google Scholar 

  48. Tong X, Zeng M, Li J, Li F (2017) UV-assisted synthesis of surface modified mesoporous TiO/G microspheres and its electrochemical performances in lithium ion batteries. Appl Surf Sci 392:897–903. https://doi.org/10.1016/j.apsusc.2018.12.202

    Article  CAS  Google Scholar 

  49. Lu Q, Yang J, Lu W, Wang J, Nuli Y (2015) Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries. Electrochim Acta 152:489–495. https://doi.org/10.1016/j.electacta.2014.11.176

    Article  CAS  Google Scholar 

  50. Kim SH, Choi KH, Cho SJ, Park JS, Cho KY, Lee CK, Lee SB, Shim JK, Lee SY (2014) A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries. J Mater Chem A 2:10854–10861. https://doi.org/10.1039/c4ta00494a

    Article  CAS  Google Scholar 

  51. Na W, Lee AS, Lee JH, Hwang SS, Kim E, Hong SM, Koo CM (2016) Lithium dendrite suppression with UV-curable polysilsesquioxane separator binders. ACS Appl Mater Interfaces 8:12852–12858. https://doi.org/10.1021/acsami.6b02735

    Article  CAS  PubMed  Google Scholar 

  52. Kil EH, Choi KH, Ha HJ, Xu S, Rogers JA, Kim MR, Lee YG, Kim KM, Cho KY, Lee SY (2013) Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Adv Mater 25:1395–1400. https://doi.org/10.1002/adma.201204182

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanchun Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Liu, H. PVDF-HFP/LLZTO composite electrolytes with UV cure for solid-state lithium rechargeable batteries. J Solid State Electrochem 27, 2671–2679 (2023). https://doi.org/10.1007/s10008-023-05570-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05570-2

Keywords

Navigation