Skip to main content

Advertisement

Log in

Preparation and characterization of γ-In2Se3 thin-film photoanodes for photoelectrochemical water splitting

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Indium selenide (γ-In2Se3) films were prepared using RF magnetron sputtering. Influence of deposition time on structural, optical, morphological, and photoelectrochemical (PEC) performance was studied. Formation of γ-In2Se3 is confirmed by low angle XRD, Raman spectroscopy, and XPS analysis. Surface morphology investigated using FE-SEM shows that γ-In2Se3 films are uniform and have a dense grain structure, without cracks and holes. Optical properties show that γ-In2Se3films absorb mainly in the UV region, and the bandgap energy decreases from 2.81 to 2.27 eV as deposition duration increases. Conduction and valance band-edge potential values show that γ-In2Se3 films are suitable for photoelectrochemical hydrogen evolution. PEC activity of γ-In2Se3 photoanodes was evaluated using linear sweep voltammetry (LSV), and there was an increase in photocurrent density with deposition time. Electron impedance spectroscopy (EIS) analysis revealed that γ-In2Se3 photoanodes had high charge transfer resistance, and it decreases with deposition time, which leads to improved PEC performance. Investigation of Mott Schottky's (MS) results shows a shifting of flat band potential towards negative potential, suggesting movement of fermi level towards conduction band edge. Carrier density increases from 3.7 × 1019 cm−3 to 8.9 × 1020 cm−3 and depletion layer width of γ-In2Se3 photoanodes are found in the range of ~ 2.67–9.10 nm. The gradual increase in electron lifetime indicates a decrease in the recombination rate of photo-generated charge carriers. An increase in time-dependent photocurrent density reveals that γ-In2Se3 films have effective electron–hole separation. Our work demonstrates that γ-In2Se3 can be a probable candidate for PEC water splitting and opto-electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zou Z, Ye J, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627

    Article  CAS  PubMed  Google Scholar 

  2. Zhang H, Ming J, Zhao J, Gu Q, Xu C, Ding Z, Yuan R, Zhang Z, Lin H, Wang X, Long J (2019) High-Rate, Tunable Syngas Production with Artificial Photosynthetic Cells. Angew Chem 131(23):7800–7804

    Article  Google Scholar 

  3. Holmes MA, Townsend TK, Osterloh FE (2012) Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem Commun 48:371–373

    Article  CAS  Google Scholar 

  4. Sharma KN, Joshi H, Singh VV, Singh P, Singh AK (2013) Palladium(II) complexes of pyrazolated thio/selenoethers: Syntheses, structures, single-source precursors of Pd4Se and PdSe nano-particles and potential for catalyzing Suzuki-Miyaura coupling. Dalton Trans 42:3908–3918

    Article  CAS  PubMed  Google Scholar 

  5. Monireh F, Yousefi M, Yousefzadeh S, Zirak M, Naseri N, Jeon T, Choi W, Moshfegh A (2019) Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ Sci 12:59–95

    Article  Google Scholar 

  6. Hui C, Gu Y, Lin Y, Yu Y, Geohegan DB, Xiao K (2019) Synthesis and emerging properties of 2D layered III-VI metal chalcogenides. Appl Phys Rev 6:041312

  7. Matthews P, McNaughter P, Lewis D, O’Brien P (2017) Shining a light on transition metal chalcogenides for sustainable photovoltaics. Chem Sci 8:4177–4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin J, Bie M, Shang J, Tang X, Kou L (2020) Janus transition metal dichalcogenides: a superior platform for photocatalytic water splitting. Journal of Physics: Materials 3: 022004

  9. Kumar G, Kumar J, Ilanchezhiyan P, Paulraj M, Jeon H, Kim D, Kang T (2020) Photoelectrochemical analysis of shape modified γ-phase In2Se3 nanostructures photoelectrodes. J Market Res 9:12318–12327

    Google Scholar 

  10. Procopio F, Pedrosa R, DeSouza F, Paz W, Scopel W (2020) Tuning the photocatalytic water-splitting capability of two-dimensional α-In2Se3 by strain-driven bandgap engineering. Physical Chemistry Chemical Physics 223520–3526

  11. Yadav A, Salunke S (2015) Photoelectrochemical properties of In2Se3 thin films: Effect of substrate temperature. J Alloy Compd 640:534–539

    Article  CAS  Google Scholar 

  12. Raval A, Saini L, Shah D, Patel S (2020) Synthesis and characterization of indium selenide thin films for solar cell application. AIP Conference Proceedings 2220:090029

  13. Tanda M, Manaka S, Yamada KM, Takahashi K (1993) Photoluminescence studies and solar-cell application of CuInSe2 thin films prepared using selenization techniques. Jpn J Appl Phys 32:1913

    Article  CAS  Google Scholar 

  14. Zhou J, Zeng Q, Lv D, Sun L, Niu L, Fu W, Liu F, Shen Z, Jin C, Liu Z (2015) Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett 15:6400–6405

    Article  CAS  PubMed  Google Scholar 

  15. Manolikas C (1988) New results on the phase transformations of ln2Se3. J Solid State Chem 74:319–328

    Article  CAS  Google Scholar 

  16. Amory C, Bernede JC, Marsillac S (2003) Study of a growth instability of γ-In2Se3. J Appl Phys 94:6945–6948

    Article  CAS  Google Scholar 

  17. Jasinski J, Swider W, Washburn J, Liliental-Weber Z, Chaiken A, Nauka K, Gibson G, Yang C (2002) Crystal structure of κ-In2Se3. Appl Phys Lett 81:4356–4358

    Article  CAS  Google Scholar 

  18. Bhalerao A, Jambure S, Bulakhe R, Kahanda S l, Jagtap S, Banpurkar, Ansari A, In I, Lokhande C (2021) Substrate-Assisted Electrosynthesis of Patterned Lamellar Type Indium Selenide (InSe) Layer for Photovoltaic Application, Proceedings of the 7th International Conference on Advances in Energy Research, Springer Proceedings in Energy, M. Bose and A. Modi (eds.) pp. 837–845

  19. Wu C, Kang J, Wang B, Zhu H, Li Z, Chen S, Wang L, Yang W, Xie C, Luo L (2019) Defect-induced broadband photodetection of layered γ-In2Se3 nanofilm and its application in near-infrared image sensors. Journal of Materials Chemistry C 7:11532–11539

    Article  CAS  Google Scholar 

  20. Julien C, Hatzikraniotis E, Chevy A, Kambas K (1985) Electrical behavior of lithium intercalated layered In-Se compounds. Mater Res Bull 20:3287–3292

    Article  Google Scholar 

  21. Lee H, Kang HD, Tran L (2005) Indium selenide (In2Se3) thin film for phase-change memory. Mater Sci Eng B 119:196–201

    Article  Google Scholar 

  22. Li Q, Li Y, Gao J, Wang S, Sun X (2011) High performance single In2Se3 nanowire photodetector. Appl Phys Lett 99:243105

  23. Panda R, Naik R, Mishra N (2018) Low-temperature growth of γ phase in thermally deposited In2Se3 thin films. Phase Transitions 91:862–871

    Article  CAS  Google Scholar 

  24. Jiadong Z, Zeng Q, Lv D, Sun L, Niu L, Fu W, Liu F, Shen Z, Jin C, Liu Z (2015) Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett 15:6400–6405

    Article  Google Scholar 

  25. Xiaoyan T, Zhou J, Yang Q (2011) Ascorbic acid-assisted solvothermal growth of γ-In2Se3 hierarchical flowerlike architectures. CrystEngComm 13:2792–2798

    Article  Google Scholar 

  26. In-Hwan C (2011) The Preparation of CIS Absorber Layers by Using MOCVD with Two Different Methods. J Korean Phys Soc 59:80–84

    Article  Google Scholar 

  27. Sylvie M, Sanchez S, Vedel J (1996) Electrodeposition of indium selenide In2Se3. Journal of Electroanalytical Chemistry 412:1–295–101.

  28. Takamasa K, Hiramatsu T, Onojima N (2011) Growth of γ-In2Se3 Thin Films by Electrostatic Spray Pyrolysis Deposition. Japanese Journal of Applied Physics 50:5S2 05FB11.

  29. Li S, Yan Y, Zhang Y, Ou Y, Ji Y, Liu L, Yan C, Zhao Y, Yu Z (2014) Monophase γ-In2Se3 thin film deposited by magnetron radio-frequency sputtering. Vacuum 99:228–232

    Article  CAS  Google Scholar 

  30. Yong Y, Li S, Ou Y, Ji Y, Yu Z, Liu L, Yan C, Zhang Y, Zhao Y (2014) Effects of pressure and deposition time on the characteristics of In2Se3 films grown by magnetron sputtering. Electron Mater Lett 10:1093–1101

    Article  Google Scholar 

  31. Vaidyanathan R, Stickney JL, Cox SM, Compton SP, Happek U (2003) Formation of In2Se3 thin films and nanostructures using electrochemical atomic layer epitaxy. J Electroanal Chem 559:55–61

    Article  CAS  Google Scholar 

  32. Ohtsuka T, Nakanishi K, Okamoto T, Yamada A, Konagai M, Jahn U (2001) Epitaxial growth of γ-In2Se3 films by molecular beam epitaxy. Jpn J Appl Phys 40:509

    Article  CAS  Google Scholar 

  33. Hankare PP, Asabe MR, Chate PA, Rathod KC (2008) Structural, optical and microscopic properties of chemically deposited In2Se3 thin films. J Mater Sci Mater Electron 19:1252–1257

    Article  CAS  Google Scholar 

  34. Mutlu IH, Zarbaliyev MZ, Aslan F (2007) Indium selenide thin film preparation by sol-gel technique. J Sol Gel Sci Technol 43:223–226

    Article  CAS  Google Scholar 

  35. Sarmah PC, Rahman A (1998) Electrical and optical properties of RF sputtered CdTe films. Bull Mater Sci 21:149–154

    Article  CAS  Google Scholar 

  36. Compaan AD, Gupta A, Lee S, Wang S, Drayton J (2004) High efficiency magnetron sputtered Cds/CdTe solar cells. Sol Energy 77:815–822

    Article  CAS  Google Scholar 

  37. Li S, Yan Y, Deng Q, Yu Z, Zhang Y, Jiang Y, Song X, Zhao H, Su J, Lid J, Xia C (2020) Substrate-induced phase control of In2Se3 thin films. Journal of Alloys and Compounds 845:156270

  38. Yan Y, Li S, Ou Y, Ji Y, Yu Z, Liu L, Yan C, Zhang Y, Zhao Y (2014) Effects of pressure and deposition time on the characteristics of In2Se3 films grown by magnetron sputtering. Electron Mater Lett 10:1093–1101

    Article  CAS  Google Scholar 

  39. Jadhavar A, Bhorde A, Waman V, Pathan H, Jadkar S (2015) Synthesis of indium tin oxide (ITO) as a transparent conducting layer for solar cells by RF sputtering. Eng Sci 5:126–130

    Google Scholar 

  40. Nilanthy B, Steer ED, Smith EF, Kudrynskyi ZR, Kovalyuk ZD, Eaves L, Patanè A, Beton PH (2018) Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe. 2D Materials 5: 035026

  41. Cullity BD, Stock SR (2001) Elements of X-Ray Diffraction, 3rd edn. Prentice-Hall, Upper Saddle River NJ

    Google Scholar 

  42. Niranjan R, Padha N (2021) Growth of γ-In2Se3 monolayer from multifaceted InxSey thin films via annealing and study of its physical properties. Materials Chemistry and Physics 257:123823

  43. Kite S, Chate P, Garadkar K, Sathe D (2017) Effect of annealing temperature on properties of molybdenum disulfide thin films. J Mater Sci Mater Electron 28:16148–16154

    Article  CAS  Google Scholar 

  44. Ke F, Liu C, Gao Y, Zhang J, Tan D, Han Y, Ma Y, Shu J, Yang W, Chen B, Mao HK, Chen XJ, Gao C (2014) Interlayer-glide-driven isosymmetric phase transition in compressed In2Se3. Appl Phys Lett 104/21: 212102

  45. Weszka J, Daniel Ph, Burian A, Burian AM, Nguyen AT (2000) Raman scattering in In2Se3 and InSe2 amorphous films. J Non-Cryst Solids 265:98–104

    Article  CAS  Google Scholar 

  46. Fang YX, Zhang H, Azad F, Wang SP, Ling FCC, Su SC (2018) Band offset and an ultra-fast response. UV-VIS photodetector in γ-In2Se3/p-Si heterojunction heterostructures. RSC Adv 8:29555–29561

    Article  CAS  Google Scholar 

  47. Kursula PK (2000) Accuracy, precision and detection limits of SEM–WDS, SEM-EDS and PIXE in the multi-elemental analysis of medieval glass. X-Ray Spectrom 29:111–118

    Article  Google Scholar 

  48. Yang S, Xu C, Yang L, Huabc SP, Zhen L (2016) Solution-phase synthesis of γ-In2Se3 nano-particles for highly efficient photocatalytic hydrogen generation under simulated sunlight irradiation. RSC Adv 6:106671–106675

    Article  CAS  Google Scholar 

  49. Shi W, Yu S, Liu P, Fan W, Luo H, Song S (2013) Near-Infrared Photoluminescent Flowerlike α-In2Se3 Nanostructures from a Solvothermal Treatment. Chem Eng J 225:474–48029

    Article  CAS  Google Scholar 

  50. Pei L, Yu S, Fan W, Shi W (2013) A new inorganic-organic hybrid In2Se3 as hollow nanospheres: hydrothermal synthesis and near-infrared photoluminescence properties. Dalton Trans 42:2887–2893

    Article  Google Scholar 

  51. Kenneth B, William M, Wiley R, Venkatasubramanian E, Ohuchi F (2009) Vacancies ordered in screw form (VOSF) and layered indium selenide thin film deposition by laser back ablation. Appl Surf Sci 255:9707–9711

    Article  Google Scholar 

  52. Tauc J (1970) Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull 5:721–729

    Article  CAS  Google Scholar 

  53. Hassanien AS, Akl AA (2016) Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct 89:153–169

    Article  CAS  Google Scholar 

  54. Mott NF (1979) Davis E Electronics processes in non-crystalline materials. Clarendon, Oxford, p 428

    Google Scholar 

  55. Pathinettam PD, Marikani A, Murali KR (2002) Influence of thickness and substrate temperature on electrical and photoelectrical properties of vacuum deposited CdSe thin films. Mater Chem Phys 78:51–58

    Article  Google Scholar 

  56. Hasegawa S, Kitagawa M (1978) Effects of annealing on localized states in amorphous Ge films. Solid State Commun 27:855–858

    Article  CAS  Google Scholar 

  57. Abdel-Rahim FM, Hafiz MM, Alsorory H (2013) Thermal annealing effect on the structure and optical properties of Bi5Ge40Se55 thin films. J Alloys Comp 57076–80

  58. Nang TT, Okuda M, Matsushita T, Yokota S, Suzuki A (1976) Electrical and optical properties of GexSe1-x amorphous thin films. Jpn J Appl Phys 15:849

    Article  Google Scholar 

  59. Yang S, Xu CY, Yang L, Hu SP, Zhen L (2016) Solution-phase synthesis of γ-In2Se3 nano-particles for highly efficient photocatalytic hydrogen generation under simulated sunlight irradiation. RSC Adv 6:106671–106675

    Article  CAS  Google Scholar 

  60. Caoa J, Li X, Lin H, Xu B, Chen S, Guan Q (2013) Surface acid etching of (BiO)2CO3 to construct (BiO)2CO3/BiOX (X = Cl, Br, I) heterostructure for methyl orange removal under visible light. Appl Surf Sci 266:294–299

    Article  Google Scholar 

  61. Xi Z, Zhang L, Xie T, Wang D (2009) Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J Phys Chem C 113:7371–7378

    Article  Google Scholar 

  62. Windisch C, Exarhos G (2000) Mott-Schottky analysis of thin ZNS films. J Vac Sci Technol A 18:1677–1680

    Article  CAS  Google Scholar 

  63. Zhang H, Ma L, Ming J, Liu B, Zhao Y, Hou Y, Ding Z, Xu C, Zhang Z, Long J (2019) Amorphous Ta2OxNy-enwrapped TiO2 rutile nanorods for enhanced solar photoelectrochemical water splitting. Appl Catal B 243:481–489

    Article  CAS  Google Scholar 

  64. Zhang H, Zhang P, Zhao J, Liu Y, Huang Y, Huang H, Yang C, Zhao Y, Wu K, Fu X, Jin S (2021) The Hole-Tunneling Heterojunction of Hematite-Based Photoanodes Accelerates Photosynthetic Reaction. Angew Chem Int Ed 60(29):16009–16018

    Article  CAS  Google Scholar 

  65. Lin J, Heo Y, Nattestad A, Sun Z, Wang L, Kim JH, Dou SX (2014) 3D Hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6 % conversion efficiency. Scientific Reports 4:5769

  66. Rekha D, Baby LR, Gyu KH, Borse PH (2013) Enhanced solar photoelectrochemical conversion efficiency of ZnO:Cu electrodes for water-splitting application. International Journal of Photoenergy, Article ID 928321

Download references

Acknowledgements

Ashish Waghmare, Yogesh Hase, Vidya Doiphode, Shruti Shah, Pratibha Shinde, Subhash Pandharkar, Shruthi Nair, Ashvini Punde, and Bharat Bade are thankful to the Ministry of New and Renewable Energy (MNRE), Government of India, for the financial support under the National Renewable Energy Fellowship (NREF) program. Rahul Aher is thankful to Savitribai Phule Pune University, Pune, for Bharat Ratna JRD Tata Gunwant Sanshodhak Shishyavruti. Vidhika Sharma, Mohit Prasad, and Sandesh Jadkar are grateful to Indo-French Centre for the Promotion of Advanced Research-CEFIPRA, Department of Science and Technology, New Delhi, for special financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohit Prasad or Sandesh Jadkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waghmare, A., Sharma, V., Shinde, P. et al. Preparation and characterization of γ-In2Se3 thin-film photoanodes for photoelectrochemical water splitting. J Solid State Electrochem 26, 219–232 (2022). https://doi.org/10.1007/s10008-021-05054-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05054-1

Keywords

Navigation