Skip to main content
Log in

Effect of annealing temperature on properties of molybdenum disulfide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The technologically significant molybdenum disulfide thin films were coated onto a non-conducting glass substrates using Automatic-CBD process. Consequences of annealed process on its physical appearance of the thin films, thickness, morphology, growth, structural and optical properties of the films were studied. The annealed sample shows an impact on the structural analysis, lattice cell, volume, average crystallite parameters. The effects of annealed temperature on the XRD pattern show that the increase of crystallite size leads to decrease in the grain boundary which will decrease in the dislocation density. Optical parameters measurement revealed that the optical band energies values of the annealed thin films lie in the range among 1.78–2.08 eV for temperature range 373–473 K. The obtained values were confirmed by photoluminesce. Surface morphology study by FE-scanning electron microscopy showed increase of grain sizes with annealing temperature. The Effect of annealed temperature on properties of thin films is discussed from the point of applications based on achieving high-performance opto-electronics and solar devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Pramanik, S. Bhattacharya, Mater. Res. Bull. 25(1), 15–23 (1990)

    Article  Google Scholar 

  2. P. Roy, S. Srivastava, Thin Solid Films 496(2), 293–298 (2006)

    Article  Google Scholar 

  3. S. Hussain, M. Shehzaa, D. Vikraman, M. Iqbal, J. Singh, M. Khan, J. Eom, Y. Seo, J. Jung, J. Alloys Compd. 653, 369–378 (2015)

    Article  Google Scholar 

  4. C. Chen, H. Qiao, Y. Xue, W. Yu, J. Song, Y. Lu, S. Li, Q. Bao, Photo. Res. 3(4), 110–114 (2015)

    Article  Google Scholar 

  5. W. Lee, T. Besmann, M. Stott, J. Mater. Res. 9(6), 1474–1483 (1994)

    Article  Google Scholar 

  6. A. Aliyev, M. Elrouby, S. Cafarova, Mater. Sci. Semicond. Process. 32, 31–39 (2015)

    Article  Google Scholar 

  7. T. Anand, C. Sanjeeviraja, M. Jayachandran, Vacuum 60(4), 431–435 (2001)

    Article  Google Scholar 

  8. S. Murugesan, A. Akkineni, B. Chou, M. Glaz, D. Bout, K. Stevenson, Nano 7(9), 8199–8205 (2013)

    Google Scholar 

  9. T. Anand, S. Shariza, Electrochim. Acta 81, 64–73 (2012)

    Article  Google Scholar 

  10. S. Ray, J. Mater. Sci. Lett. 19, 803–804 (2000)

    Article  Google Scholar 

  11. A. Abinaya, B. Jeyaprakash, Mater. Sci. Semicond. Process. 31, 582–587 (2015)

    Article  Google Scholar 

  12. S. Balendhran, J. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, K. Kalantar-Zadeh, Nanoscale 4(2), 461–466 (2012)

    Article  Google Scholar 

  13. S. Sartale, C.D. Lokhande, Mater. Chem. Phys. 71, 94–97 (2001)

    Article  Google Scholar 

  14. S. Raj, X. Xiuwen, W. Yang, F. Yang, L. Hou, Y. Li, Electrochim. Acta 212, 614–620 (2016)

    Article  Google Scholar 

  15. T. Anand, Sains Malays. 38(1), 85–89 (2009)

    Google Scholar 

  16. A. Dashora, U. Ahuja, K. Venugopalan, Compd. Mater. Sci. 69, 216–221 (2013)

    Article  Google Scholar 

  17. L. King, W. Zhao, M. Chhowalla, D. Riley, G. Eda, J. Mater. Chem. A, 1, 8935–8941 (2013)

    Article  Google Scholar 

  18. A. Savan, E. Pflüger, P. Voumard, A. Schröer, M. Simmonds, Lubr. Sci. 12(2), 185–203 (2000)

    Article  Google Scholar 

  19. J. Pu, Y. Yomogida, K. Liu, L. Li, Y. Iwasa, T. Takenobu, Nano Lett. 12(8), 4013–4017 (2012)

    Article  Google Scholar 

  20. Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, H. Zhang, Small 8(19), 2994–2999 (2012)

    Article  Google Scholar 

  21. S. Ray, Sens. Actuators B 222, 492–498 (2016)

    Article  Google Scholar 

  22. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, J. Am. Chem. Soc. 130(23), 7176–7177 (2008)

    Article  Google Scholar 

  23. J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J.P. Lemmon, Chem. Mater. 22(16), 4522–4524 (2010)

    Article  Google Scholar 

  24. J. Wang, L. Lu, M. Lotya, J. Coleman, S. Chou, H. Liu, A. Minett, J. Chen, Ad. Energy Mater. 3(6), 798–805 (2013)

    Article  Google Scholar 

  25. S. Shariza, T. Anand, Chalcogenide Lett. 8(9), 529–539 (2011)

    Google Scholar 

  26. S.B. Sargar, D.J. Sathe, P.A. Chate, Z.D. Sande, S.V. Kite, IJSRE 4(6), 5455–5460 (2016)

    Google Scholar 

  27. P.A. Chate, D.J. Sathe, P.P. Hankare, S.D. Lakade, V.D. Bhabad, Optik 126, 5715–5717 (2015)

    Article  Google Scholar 

  28. D.J. Sathe, P.A. Chate, S.B. Sargar, S.V. Kite, Z.D. Sande, J. Mater. Sci. 27(4), 3834–3838 (2016)

    Google Scholar 

  29. D.J. Sathe, P.A. Chate, P.P. Hankare, A.H. Manikshete, U.B. Sankpal, V.M. Bhuse, Appl. Nanosci. 6, 191–196 (2016)

    Article  Google Scholar 

  30. H. Conley, B. Wang, J. Ziegler, R. Haglund, S. Pantelides, K. Bolotin, Nano Lett. 13(8), 3626–3630 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to SERB-DST, New Delhi for the financial support under project No.SB/FT/CS-018/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Sathe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kite, S.V., Chate, P.A., Garadkar, K.M. et al. Effect of annealing temperature on properties of molybdenum disulfide thin films. J Mater Sci: Mater Electron 28, 16148–16154 (2017). https://doi.org/10.1007/s10854-017-7515-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7515-0

Navigation