Skip to main content

Advertisement

Log in

Review on the applications and development of fluidized bed electrodes

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Fluidized bed electrodes (FBEs), which were discovered in the late 1960s, are 3D (three-dimensional) particle electrodes. The FBEs have been attracting extensive attention because of their unique properties and advantages, such as higher space-time yield, high active electrode area, and higher mass transfer rate than conventional electrochemical reactors. This review summarizes the progress of FBEs and spouted bed electrodes in the past few decades and focuses on their applications in metallurgy, environmental protection, functional particle preparation, energy storage and conversion, redox reaction, and water treatment. Although most examples outlined in this paper are still in laboratory, they can provide researchers with useful guidance for further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

α :

surface area ratio per unit volume of metal particles, cm−1

A E :

electrode area per unit electrode volume, m−1

d p :

particle diameter, μm

d p * :

dimensionless solid particle diameter, defined as dp* = dp (ρg∆ρ/μ2)1/3

d v :

equivalent diameter of equal volume of single particle, m

D :

tube diameter, mm

f(ŋ, C) :

expression of electrochemical reaction speed

H :

the height of particle bed, m

i m :

current density of metal particle phase, A/cm2

i s :

current density of electrolyte liquid phase, A/cm2

I :

total current density of current feeder, A/cm2

n :

slopes obtained from the plots of log ul versus log ε

Δp :

pressure drop over fluidized bed electrodes, Pa

Re :

Reynolds number

Re t :

Reynolds number of particle terminal speed

S c :

Schmidt number

S h :

Sherwood number

u :

superficial liquid velocity, m/s

u l :

external phase flow rate with bed porosity of 1, m/s

u t :

settling velocity of particle electrode, m/s

U 1 * :

dimensionless superficial liquid velocity, defined as Ul* = Ul (ρ2/μg∆ρ)1/3

U cv :

transition velocity of fluidization regime to transport regime, m/s

U mf :

minimum fluidization velocity, m/s

χ :

position coordinates starting from the current feeder, cm

ε :

porosity of fluid bed electrodes

μ :

viscosity of fluid, Pa s

ρ f :

density of fluid, kg/m3

σ m :

effective conductivity of metal phase, Ω−1 cm−1

σ s :

effective conductivity of liquid phase, Ω−1 cm−1

Φ m :

potential of metal particle phase, V

Φ s :

potential of metal particle phase, V

References

  1. Kunii D, Levenspiel O (1991) Fluidization engineering, 2nd edn. Butterworth-Heinemann, Boston

    Google Scholar 

  2. Backhurst JR, Coulson JM, Goodridge F, Plimley RE, Fleischmann M (1969) A preliminary investigation of fluidized bed electrodes. J Electrochem Soc 116(11):1600–1607

    Google Scholar 

  3. Backhurst JR, Goodridge F, Plimley RE, Fleischmann M (1975) Electrochemical cells comprising fluidized bed electrodes. Google Patents, America. US3879225A

  4. Backhurst JR, Fleischmann M, Goodridge F, Plimley RE (1980) Electrochemical process using a fluidized electrode. Google Patents, America. US4206020A

  5. Backhurst JR, Goodridge F, Plimley RE, Fleischmann M (1972) Electrochemical process of coating using a fluidized bed. Google Patents, America. US3654098A

  6. Backhurst JR, Goodridge F, Fleischmann M, Oldfield J (1973) Packed bed electrochemical cell including particulate bipolar electrodes separated by nonconducting particles. Google Patents, America. US3761283A

  7. Sabacky BJ, Evans JW (1979) Electrodeposition of metals in fluidized bed electrodes part Ӏ. mathematical model. J Electrochem Soc 126(7):1176–1180

    CAS  Google Scholar 

  8. Sabacky BJ, Evans JW (1977) The electrical conductivity of fluidized electrodes—its significance and some experimental measurements. Metall Trans B 8(1):5–13

    Google Scholar 

  9. Goodridge F (1977) Some recent developments of monopolar and bipolar fluidized bed electrodes. Electrochim Acta 22(9):929–933

    CAS  Google Scholar 

  10. Goodridge F, Vance CJ (1979) Copper deposition in a pilot-plant-scale fluidized bed cell. Electrochim Acta 24(12):1237–1242

    CAS  Google Scholar 

  11. Sabacky BJ, Evans JW (1979) Electrodeposition of metals in fluidized bed electrodes part II. An experimental investigation of copper electrodeposition at high current density. J Electrochem Soc 126(7):1180–1187

    CAS  Google Scholar 

  12. Hutin D, Coeuret F (1977) Experimental study of copper deposition in a fluidized bed electrode. Appl Electrochem 7(6):463–471

    CAS  Google Scholar 

  13. Fleischmann M, Oldfield JW, Tennakoon L (1971) Fluidized bed electrodes part IV. Electrodeposition of copper in a fluidized bed of copper-coated spheres. Appl Electrochem 1(2):103–112

    CAS  Google Scholar 

  14. Goodridge F, Vance CJ (1977) The electrowinning of zinc using a circulating bed electrode. Electrochim Acta 22(10):1073–1076

    CAS  Google Scholar 

  15. Salas-Morales JC, Evans JW, Newman OMG, Adcock PA (1997) Spouted bed electrowinning of zinc: part I. laboratory-scale electrowinning experiments. Metall Mater Trans B Process Metall Mater Process Sci 28(1):59–68

    Google Scholar 

  16. Verma A, Salas-Morales JC, Evans JW (1997) Spouted bed electrowinning of zinc: part II. investigations of the dynamics of particles in large thin spouted beds. Metall Mater Trans B 28(1):69–79

    Google Scholar 

  17. Huh T, Evans JW, Carey CD (1983) The fluidized bed electrowinning of silver. Metall Trans B 14(3):353–357

    Google Scholar 

  18. Sherwood WG, Queneau PB, Nikolic C, Hodges DR (1979) Fluid bed electrolysis of nickel. Metall Trans B 10(4):659–666

    Google Scholar 

  19. Dubrovsky M, Evans JW (1982) An investigation of fluidized bed electrowinning of cobalt using 50 and 1000 amp cells. Metall Trans B 13(3):293–301

    Google Scholar 

  20. Zhang ZL, Hao XG, Yu QS, Han NC, Liu SB, Sun YP (2007) Research progress in fluidized bed electrochemical reactor. Mod Chem Ind 27(1):18–22

    Google Scholar 

  21. Tamirisa PA, Teng FS, Liddell KC (2003) Fluidized bed electropolymerization of thin films: modeling and experimentation. J Electrochem Soc 150(6):117–122

    Google Scholar 

  22. Kazdobin K, Shvab N, Tsapakh S (2000) Scaling up of fluidized-bed electrochemical reactors. Chem Eng J 79(3):203–209

    CAS  Google Scholar 

  23. Yan L, Ma H, Wang B, Wang Y, Chen Y (2011) Electrochemical treatment of petroleum refinery wastewater with three-dimensional multi-phase electrode. Desalination 276(1–3):397–402

    CAS  Google Scholar 

  24. Park HI, Kim DK, Choi YJ, Pak D (2005) Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. Process Biochem 40(10):3383–3388

    CAS  Google Scholar 

  25. Sabacky BJ, Evans JW (1977) The electrical conductivity of fluidized bed electrodes—its significance and some experimental measurements. Metall Trans B 8(1):5–13

    Google Scholar 

  26. Kreysa G, Pionteck S, Heitz E (1975) Comparative investigations of packed and fluidized bed electrodes with non-conducting and conducting particles. Appl Electrochem 5(4):305–312

    CAS  Google Scholar 

  27. Beenackers AACM, van Swaaij WPM, Welmers A (1977) Mechanism of charge transfer in the discontinuous metal phase of a fluidized bed electrode. Electrochim Acta 22(11):1277–1281

    CAS  Google Scholar 

  28. Huh T, Evans JW (1987) Electrical and electrochemical behavior of fluidized bed electrodes. J Electrochem Soc 134(2):308–321

    CAS  Google Scholar 

  29. Lee JK, Shemilt LW, Chun HS (1989) Studies of bipolarity in fluidized bed electrodes. Appl Electrochem 19(6):877–881

    CAS  Google Scholar 

  30. Gabrielli C, Huet F, Sahar A (1992) Dynamic analysis of charge transport in fluidized bed electrodes: impedance techniques for electro-inactive beds. Appl Electrochem 22(9):801–809

    CAS  Google Scholar 

  31. Kusakabe K, Morooka S, Kato Y (1981) Charge transferrate in liquid-solid and gas-liquid-solid fluidized bed electrodes. J Chem Eng Jpn 14(3):208–214

    CAS  Google Scholar 

  32. Gabrielli C, Huet F, Sahar A (1994) Dynamic analysis of charge transport in fluidized bed electrodes: impedance techniques for electroactive beds. Appl Electrochem 24(6):481–488

    CAS  Google Scholar 

  33. Leroy RL (1978) Fluidized-bed electrowinning—I. general modes of operation. Electrochim Acta 23(9):815–825

    CAS  Google Scholar 

  34. Kreysa G (1980) Particle phase conductivity of a fluidized bed electrode. Electrochim Acta 25(6):813–818

    CAS  Google Scholar 

  35. Thilakavathi R, Balasubramanian N, Basha CA (2009) Modeling electrowinning process in an expanded bed electrode. J Hazard Mater 162(1):154–160

    CAS  PubMed  Google Scholar 

  36. Hoyt NC, Wainright JS, Savinell RF (2015) Mathematical modeling of electrochemical flow capacitors. J Electrochem Soc 162(4):652–657

    Google Scholar 

  37. Zhang JB, Jiang XX, Piao GL, Yang HM, Zhong ZP (2015) Simulation of a fluidized bed electrode direct carbon fuel cell. Int J Hydrogen Energ 40(8):3321–3331

    CAS  Google Scholar 

  38. Stankovic VD, Wragg AA (1995) Modelling of time-dependent performance criteria in a three-dimensional cell system during batch recirculation copper recovery. Appl Electrochemi 25(6):565–573

    CAS  Google Scholar 

  39. Jiricny V, Roy A, Evans JW (2000) Electrodeposition of zinc from sodium zincate/hydroxide electrolytes in a spouted bed electrode. Metall Mater Trans B Process Metall Mater Process Sci 31(4):755–766

    Google Scholar 

  40. Shirvanian PA, Calo JM, Hradil G (2006) Numerical simulation of fluid-particle hydrodynamics in a rectangular spouted vessel. Int J Multiphase Flow 32(6):739–753

    CAS  Google Scholar 

  41. Hu X, Bautista RG (1997) Mass transfer model of chromium reduction in a fluidized bed electrochemical reactor. Sep Sci Technol 32(10):1769–1785

    CAS  Google Scholar 

  42. Simpson CC (1977) Purity of copper produced by fluid bed electrolysis of a heap-leach solution. JOM 29(7):6–10

    CAS  Google Scholar 

  43. Jiricny V, Roy A, Evans JW (2002) Copper electrowinning using spouted-bed electrodes: part I. experiments with oxygen evolution or matte oxidation at the anode. Metall Mater Trans B Process Metall Mater Process Sci 33(5):669–676

    Google Scholar 

  44. Jiricny V, Roy A, Evans JW (2002) Copper electrowinning using spouted-bed electrodes: part II. copper electrowinning with ferrous ion oxidation as the anodic reaction. Metall Mater Trans B 33(5):677–683

    Google Scholar 

  45. Jiricny V, Evans JW (1984) Fluidized-bed electrodeposition of zinc. Metall Trans B 15(4):623–631

    CAS  Google Scholar 

  46. Tuffrey NE, Jiricny V, Evans JW (1985) Fluidized bed electrodeposition of zinc from chloride electrolytes. Hydrometallurgy. 15(1):33–54

    Google Scholar 

  47. Huh T, Savaskan G, Evans JW (1992) Further studies of a zinc-air cell employing a packed bed anode part II: regeneration of zinc particles and electrolyte by fluidized bed electrodeposition. Appl Electrochem 22(10):916–921

    CAS  Google Scholar 

  48. Masterson IF, Evans JW (1982) Fluidized bed electrowinning of copper: experiments using 150 ampere and 1,000 ampere cells and some mathematical modeling. Metall Trans B 13(1):3–13

    Google Scholar 

  49. Jiricny V, Siu S, Roy A, Evans JW (2000) Regeneration of zinc particles for zinc-air fuel cells in a spouted-bed electrod. Appl Electrochem 30(6):647–656

    CAS  Google Scholar 

  50. Tiller KG (1989) Heavy metals in soils and their environmental significance. In: Stewart BA (ed) Advances in soil science, vol vol 9. Springer, New York

    Google Scholar 

  51. Germain S, Goodridge F (1976) Copper deposition in a fluidised bed cell. Electrochim Acta 21(8):545–550

    CAS  Google Scholar 

  52. Sekine I, Ishii H (1986) Electrolytic recovery of silver from photographic fixing solutions with a fluidized bed electrode. Bull Chem Soc Jpn 59(2):551–556

    CAS  Google Scholar 

  53. Hu X, Rautlsta RG (1988) Fluidized bed electrowinning of chromium from very dilute solutions. Sep Sci Technol 23(12–13):1989–2003

    CAS  Google Scholar 

  54. Yen SC, Yao CY (1991) Enhanced metal recovery in fluidized bed electrodes with a fin-type current feeder. J Electrochem Soc 138(8):2344–2348

    CAS  Google Scholar 

  55. Zhang HB, Xu ZY, Mo XW (1992) Study on treatment of chromium-containing wastewater with fine expanded graphite fluidized electrode. Electroplating Pollut Control 12(6):20–23

    CAS  Google Scholar 

  56. Chaudhary AJ, Dando SOV, Grimes SM (2001) Removal of tin from dilute solutions. J Chem Technol Biotechnol 76(1):47–52

    CAS  Google Scholar 

  57. Shirvanian PA, Calo JM (2005) Copper recovery in a spouted vessel electrolytic reactor (SBER). Appl Electrochem 35(1):101–111

    CAS  Google Scholar 

  58. Grimshaw PP, Calo JM, Shirvanian PA, Hradil G (2011) II. Electrodeposition/removal of nickel in a spouted electrochemical reactor. Int Eng Chem Res 50(16):9525–9531

    CAS  Google Scholar 

  59. Martins R, Britto-Costa PH, Ruotolo LAM (2012) Removal of toxic metals from aqueous effluents by electrodeposition in a spouted bed electrochemical reactor. Environ Technol 33(10):1123–1131

    CAS  PubMed  Google Scholar 

  60. Baghban E, Mehrabani-Zeinabad A, Moheb A (2014) Improvement of cadmium ion electrochemical removal from dilute aqueous solutions by application of multi-stage electrolysis. Environ Sci Technol 11(6):1591–1600

    CAS  Google Scholar 

  61. Tonin GA, Ruotolo LAM (2017) Heavy metal removal from simulated wastewater using electrochemical technology: optimization of copper electrodeposition in a membraneless fluidized bed electrode. Clean Technol Environ 19(2):403–415

    Google Scholar 

  62. Yang GCC, Tsai CM (1998) A study on heavy metal extractability and subsequent recovery by electrolysis for a municipal incinerator fly ash. J Hazard Mater 58(1–3):103–120

    CAS  Google Scholar 

  63. Ye HP, Du DY (2010) Treatment of laboratory wastewater by Fe/C micro electrolysing fluidized bed. Environ Eng Sci 28:12–14

    Google Scholar 

  64. Grimshaw PP, Calo JM, Hradil G (2011) Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions. Chem Eng J 175:103–109

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen XH, Xu XJ (2013) The treatment of copper-containing wastewater by microelectrolysis-fluidized bed electrode coupled method. Chinese Selected Doctoral Dissertations and Master’s Theses Full-Text Databases

  66. Khue VA, Guo LT, Jun XX, Lin YX, Hao PR (2014) Removal of copper and fluoride from wastewater by the coupling of electrocoagulation, fluidized bed and micro-electrolysis (EC/FB/ME) process. Am J Chem Eng 2(6):86–91

    CAS  Google Scholar 

  67. Zhang J, Ji JJ, Xu ND, Ge LY (2001) Study on iron-carbon fluidized bed process for pretreatment of dyestuff wastewater. China Water Wastewater 17(8):6–9

    CAS  Google Scholar 

  68. Roessler A, Crettenand D, Dossenbach O, Rys P (2003) Electrochemical reduction of indigo in fixed and fluidized beds of graphite granules. Appl Electrochem 33(10):901–908

    CAS  Google Scholar 

  69. Yang S, Li YM, Zhou JT, Hu J (2004) Treatment of aniline using three-dimensional three-phase fluidized bed electrode. Tech Equip Environ Pollut Control 5(6):43–47

    CAS  Google Scholar 

  70. Li MY, Xiong L, Zhang N, Wang JX, Fang JZ (2005) Degradation and decolorization of dyes in water by three-dimensional electrodes. Ecol Environ 14(3):305–308

    Google Scholar 

  71. Wang WP, Zhang JS, Zhou JT, Li YM (2009) Advanced treatment of coal tar wastewater by three-dimensional fluid bed electrode reactor. Ind Water Treat 29(6):24–26

    Google Scholar 

  72. Zhang L, Duan AM, Wang LN, Fu BQ, Liu X, Wu GM (2012) Advanced treatment of coking wastewater using three-dimensional fluid bed electrode reactor. Ecol Environ Sci 21(2):370–374

    Google Scholar 

  73. Cong YQ, Zhang TT, Zhang Y, Ding WC, Zhang BY, Chen RZ (2019) A large area electrode microbial double fluidized bed reactor and wastewater treatment method. Google Patents, China. CN109516557A

  74. Desai VM, Mahalingam R, Subramanian RV (1991) Parametric study of EAA polymer thin film deposition on carbon substrates in fluidized electrode bed reactor. J Appl Polym Sci 42(12):3123–3131

    CAS  Google Scholar 

  75. Segelke S, Mahalingam R, Subramanian RV (1990) Rate studies on polyaniline films preparation in static cells and in fluidized bed electrode reactors. J Appl Polym Sci 40(12):297–312

    CAS  Google Scholar 

  76. Jiricny V, Stanek V (1994) Production of D-arabinose in a pilot plant fluidized bed electrochemical reactor. Appl Electrochem 24(9):930–935

    CAS  Google Scholar 

  77. Zhang DM, Tang ZY, Kou JJ, Zhou YM, Chen G (1983) An investigation on producing composite powder by electrodeposition. J Central-South Inst Min Metallurgy 3:1–8

    CAS  Google Scholar 

  78. Rozik R, Orinakova R, Markusova K, Trnkova L (2006) The study of Ni-Co alloy deposition on iron powder particles in a fluidized bed from sulphate bath. J Solid State Electrochem 10(7):423–429

    CAS  Google Scholar 

  79. Lashmore DS, Kelley DR, Johnson CE, Beane GL (1999) Method and apparatus for coating particulate substrate material in fluidized bed. Google Patents, China. CN1222205A

  80. Mahalingam R, Teng FS (1978) Electroinitiated polymerization coatings through packed and fluidized bed electrodes. J Appl Polym Sci 22(12):3587–3596

    CAS  Google Scholar 

  81. Teng FS, Mahalingam R (1987) Thin polymer films from fluidized electrode bed reactors. J Appl Polym Sci 34(8):2837–2852

    CAS  Google Scholar 

  82. Crouch-Baker S (2012) Use of fluidized-bed electrode reactors for alane production. Google Patents, America. US9228267B1

  83. Matsuno Y, Suzawa K, Tsutsumi A (1996) Characteristics of three-phase fluidized-bed electrodes for an alkaline fuel cell cathode. Int J Hydrog Energy 21(3):195–199

    CAS  Google Scholar 

  84. Matsuno Y, Tsutsumi A, Yoshida K (1996) Electrode performance of fixed and fluidized bed electrodes for a molten carbonate fuel cell anode. Int J Hydrog Energy 21(8):663–671

    CAS  Google Scholar 

  85. Matsuno Y, Tsutsumi A, Yoshida K (1997) Improvement in electrode performance of three-phase fluidized-bed electrodes for an alkaline fuel cell cathode. Int J Hydrog Energy 22(6):615–620

    CAS  Google Scholar 

  86. Zhang JB, Zhong ZP, Shen DK, Xiao JM, Fu ZM, Zhang HY, Zhao JX, Li WL, Yang M (2011) Characteristics of a fluidized bed electrode for a direct carbon fuel cell anode. J Power Sources 196(6):3054–3059

    CAS  Google Scholar 

  87. Zhang JB, Zhong ZP, Xiao JM, Fu ZM, Zhao JX, Li WL, Yang M (2011) Performance of fluidized bed electrode in a molten carbonate fuel cell anode. Korean J Chem Eng 28(8):1773–1778

    CAS  Google Scholar 

  88. Cohen H, Loiferman I, Suss M (2019) Fluidized bed and hybrid suspension electrodes for energy storage and water desalination systems. Google Patents, America. US20190152811A1

  89. Chiang YM, Carter WC, Ho BH, Duduta M (2010) High energy density redox flow device. Google Patents, America. US20100047671A1

  90. Paidar M, Bouzek K, Bergmann H (2002) Influence of cell construction on the electrochemical reduction of nitrate. Chem Eng J 85(2–3):99–109

    CAS  Google Scholar 

  91. Janssen LJJ (1971) On oxygen reduction at a fluidized bed electrode. Electrochim Acta 16(1):151–155

    CAS  Google Scholar 

  92. Spring KA, Evans JW (1985) An investigation of sulphite ion oxidation as an alternative anodic reaction in fluidized bed electrowinning or other high rate electrolysis cells. Appl Electrochem 15(4):609–618

    CAS  Google Scholar 

  93. Racyte J, Bernard S, Paulitsch-Fuchs AH, Yntema DR, Bruning H, Rijnaarts HHM (2013) Alternating electric fields combined with activated carbon for disinfection of Gram negative and Gram positive bacteria in fluidized bed electrode system. Water Res 47(16):6395–6405

    CAS  PubMed  Google Scholar 

  94. Kim EH, Jung YG, Lee JH, Yeo JG, Yang SC, Choi J (2014) Fabrication of core-shell particles for a fluidized bed electrode in seawater desalination. Surf Coat Technol 260:424–428

    CAS  Google Scholar 

  95. Doornbusch GJ, Dykstra JE, Biesheuvelbd PM, Suss ME (2016) Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization. Mater Chem A 4(10):3642–3647

    CAS  Google Scholar 

  96. Doornbusch GJ, Dykstra JE, Hamelers HVM, Biesheuvel PM (2017) Method for fluidized bed capacitive deionization of a fluid and de-ionization device therefor. Google Patents, Would Intellectual Property Organization. WO2017/061864-A1

  97. Marchesiello M, Thivel PX (2018) Electrochemical antiscaling treatment using a fluidized bed. Sep Purif Technol 194:480–487

    CAS  Google Scholar 

  98. Miquel BR, Cerdanyola DV (2019) Method, a system and a reactor for electrochemically purifying water. Google Patents, America. US2019/0135662-A1

  99. Stokes GG (1905) Mathematical and physical papers. Cambridge University Press, Cambridge

    Google Scholar 

  100. Robinson CD (1926) Some factors influencing sedimentation. Ind Eng Ohem 18(8):869–871

    CAS  Google Scholar 

  101. Wilhelm RH, Kwauk M (1948) Fluidization of solids particles. Chem Eng Prog 44:201–218

    CAS  Google Scholar 

  102. Zhu JX, Karamanev DG, Bassi AS, Zheng Y (2000) (Gas-) liquid-solid circulating fluidized beds and their potential applications to bioreactor engineering. Can J Chem Eng 78(1):82–94

    CAS  Google Scholar 

  103. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48(2):89–94

    CAS  Google Scholar 

  104. Mertes TS, Rhodes HB (1955) Liquid-particle behavior (part I). Chem Eng Prog 51:429–432

    CAS  Google Scholar 

  105. Lapidus L, Elgin JC (1957) Mechanics of vertical-moving fluidized systems. AICHE J 3(1):63–68

    CAS  Google Scholar 

  106. Couderc JP (1985) Incipient fluidization and particulate systems. In: Davidson JF, Clift R, Harrison D (eds) Fluidization. Academic Press, London

    Google Scholar 

  107. Richardson JF, Zaki WN (1954) Sedimentation and fluidization: part I. Trans Inst Chem Eng 32:35–55

    CAS  Google Scholar 

  108. Newman JS, Tobias CW (1962) Theoretical analysis of current distribution in porous electrodes. J Electrochem Soc 109(12):1183–1191

    CAS  Google Scholar 

  109. Fleischmann M, Oldfield JW (1971) Fluidised bed electrodes part I. polarisation predicted by simplified models. J Electroanal Chem 29(2):211–230

    CAS  Google Scholar 

  110. Pletcher D, Walsh FC (1990) Industrial electrochemistry, 2nd edn. Chapman and Hall, London

    Google Scholar 

  111. Tschöpe A, Wyrwoll M, Schneider M, Mandel K, Franzreb M (2020) A magnetically induced fluidized-bed reactor for intensification of electrochemical reactions. Chem Eng J 385:123845

    Google Scholar 

  112. Tschöpe A, Heikenwäldera S, Schneider M, Mandel K, Franzreb M (2020) Electrical conductivity of magnetically stabilized fluidized-bed electrodes-chronoamperometric and impedance studies. Chem Eng J 396:125326

    Google Scholar 

  113. Goodridge F, Holden DI, Murray HD, Plimley RF (1971) Fluidized-bed electrodes part I a mathematical of the fluidized bed electrode. Chem Eng Res Des 49:128–136

    CAS  Google Scholar 

  114. Plimley RE, Wright AR (1984) A bipolar mechanism for charge transfer in a fluidised bed electrode. Chem Eng Sci 39(3):395–405

    CAS  Google Scholar 

  115. Hancock JT, Conway ME (2019) Equations to support redox experimentation. Methods Mol Biol:183–195

  116. Marshall RJ, Walsh FC (1985) A review of some recent electrolytic cell designs. Surf Technol 24(1):45–77

    CAS  Google Scholar 

  117. Walsh FC, Reade GW (1994) Design and performance of electrochemical reactors for efficient synthesis and environmental treatment. Part 1. Electrode geometry and figures of merit. Analyst 119(5):791–796

    CAS  Google Scholar 

  118. Walsh FC, Reade GW (1994) Design and performance of electrochemical reactors for efficient synthesis and environmental treatment. Part 2. Typical reactors and their performance. Analyst 119(5):797–803

    CAS  Google Scholar 

  119. Walsh FC, Ponce de León C (2018) Progress in electrochemical flow reactors for laboratory and pilot scale processing. Electrochim Acta 280:121–148

    CAS  Google Scholar 

  120. Walsh FC, Reade GW (1994) Electrochemical techniques for the treatment of dilute metal-ion solutions. Environ Orient Electrochem:3–44

  121. Ma G, Zhou Y, Zhu JH (2013) Study on the spouted bed electrodes with draft tube. Chem Eng Equip 4:8–10

    Google Scholar 

  122. Qiu ZX (1998) Principle and application of aluminum electrolysis. China University of Mining and Technology Press, Xuzhou

    Google Scholar 

  123. Tang CB, Xue JQ (2013) Principle of metallurgical electrochemistry. Metallurgical Industry Press, Beijing

    Google Scholar 

  124. Coeuret F (1980) The fluidized bed electrode for the continuous recovery of metals. Appl Electrochemi 10(6):687–696

    CAS  Google Scholar 

  125. Carbin DC, Gabe DR (1975) Electrodeposition from a fluidized bed electrolyte. III. Electrodeposit structure. Appl Electrochem 5(2):137–143

    CAS  Google Scholar 

  126. Mei RQ, Wei QP, Zhu CW et al (2019) 3D macroporous boron-doped diamond electrode with interconnected liquid flow channels: a high-efficiency electrochemical degradation of RB-19 dye wastewater under low current. Appl Catal B Environ 245:420–427

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Project No. 51774262, 21736010, 51504231, and 51504232); Open Project of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization (Project No. CNMRCUKF1704); Yunnan Ten Thousand Talents Plan Young & Elite Talents Project (YNWR-QNBJ-2018-327), and the Key Research Program of Nanjing IPE Institute of Green Manufacturing Industry (No. E0010705).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haitao Yang or Chuanlin Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Yang, H., Fan, C. et al. Review on the applications and development of fluidized bed electrodes. J Solid State Electrochem 24, 2199–2217 (2020). https://doi.org/10.1007/s10008-020-04786-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04786-w

Keywords

Navigation