Skip to main content
Log in

Flow-through amperometric methods for detection of the bioactive compound quercetin: performance of glassy carbon and screen-printed carbon electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Rapid methods using batch injection analysis (BIA) with amperometric detection were developed for the determination of quercetin extracted from the Brazilian plants Brunfelsia uniflora (BU), Vismia guianensis (VG), and Arrabidaea brachypoda (AB). One method was based on a glassy carbon electrode (GCE) and pulsed amperometry (BIA-PA), while the other employed a screen-printed carbon electrode (SPCE) and conventional amperometry (BIA-CA). Both proposed methods required minimal sample manipulation (only dilution in the carrier electrolyte), and the determination was performed with a single injection of 100 μL of sample solution. The BIA-PA method was highly accurate (RSD = 0.7%, n = 30), fast (120 injections h−1), and presented low limits of detection (0.004 μmol L−1) and quantification (0.015 μmol L−1). The BIA-CA method was also accurate (RSD = 1.1%, n = 30), fast (120 injections h−1), and presented low limits of detection (0.027 μmol L−1) and quantification (0.091 μmol L−1). The application of the proposed methods for the determination of quercetin in the plant extracts provided results similar to those obtained by high-performance liquid chromatography (HPLC) at a confidence level of 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shaidarova LG, Chelnokova IA, Degteva MA, Makhmutova GF, Leksina YA, Gedmina AV, Budnikov GK (2016) Amperometric detection under batch-injection analysis conditions of caffeine on an electrode modified by mixed-valence iridium and ruthenium oxides. Pharm Chem J 49(10):711–714. https://doi.org/10.1007/s11094-016-1358-5

    Article  CAS  Google Scholar 

  2. Onizhuk MO, Tkachenko OS, Panteleimonov AV, Varchenko VV, Belikov K, Kholin YV (2018) Electrochemical oxidation of quercetin in aqueous and ethanol-water media with the use of graphite/chemically modified silica ceramic electrode. Ionics 24(6):1755–1764. https://doi.org/10.1007/s11581-017-2320-6

    Article  CAS  Google Scholar 

  3. Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99(1):191–203. https://doi.org/10.1016/j.foodchem.2005.07.042

    Article  CAS  Google Scholar 

  4. Gil ES, Couto RO (2013) Flavonoid electrochemistry: a review on the electroanalytical applications. Braz J Pharmacogn 23(3):542–558. https://doi.org/10.1590/S0102-695X2013005000031

    Article  CAS  Google Scholar 

  5. Gomes SMC, Ghica ME, Rodrigues IA, de Souza Gil E, Oliveira-Brett AM (2016) Flavonoids electrochemical detection in fruit extracts and total antioxidant capacity evaluation. Talanta 154:284–291. https://doi.org/10.1016/j.talanta.2016.03.083

    Article  CAS  PubMed  Google Scholar 

  6. D’Andrea G (2015) Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia 106:256–271. https://doi.org/10.1016/j.fitote.2015.09.018

    Article  CAS  PubMed  Google Scholar 

  7. Timbola AK, de Souza CD, Giacomelli C, Spinelli A (2006) Electrochemical oxidation of quercetin in hydro-alcoholic solution. J Braz Chem Soc 17(1):139–148. https://doi.org/10.1590/S0103-50532006000100020

    Article  CAS  Google Scholar 

  8. Rajabi H, Noroozifar M (2018) Modified graphite paste electrode with Lewatit FO36 Nanoresin/multi-walled carbon nanotubes for determination of Quercetin. Russ J Electrochem 54(3):234–242. https://doi.org/10.1134/S1023193518030084

    Article  CAS  Google Scholar 

  9. Pliuta K, Chebotarev A, Koicheva A, Bevziuk K, Snigur D (2018) Development of a novel voltammetric sensor for the determination of quercetin on an electrochemically pretreated carbon-paste electrode. Anal Methods 10(12):1472–1479. https://doi.org/10.1039/C7AY02953E

    Article  CAS  Google Scholar 

  10. Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y (2016) The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Technol 56:21–38

    Article  CAS  Google Scholar 

  11. Piovesan JV, Spinelli A (2014) Determination of quercetin in a pharmaceutical sample by square-qave voltammetry using p Poly(vinylpyrrolidone)-modified carbon-paste electrode. J Braz Chem Soc 25:517–525. https://doi.org/10.5935/0103-5053.20140019

    Article  CAS  Google Scholar 

  12. Jorge LF, Meniqueti AB, Silva RF, Santos KA, da Silva EA, Gonçalves JE, de Rezende CM, Colauto NB, Gazim ZC, Linde GA (2017) Antioxidant activity and chemical composition of oleoresin from leaves and flowers of Brunfelsia uniflora. Genet Mol Res 16(3). https://doi.org/10.4238/gmr16039714

  13. De Fátima AM, De Freitas PF, Barbosa-Filho JM (2007) Synopsis of the plants known as medicinal and poisonous in northeast of Brazil. Braz J Pharmacogn 17(1):114–140. https://doi.org/10.1590/s0102-695x2007000100021

    Article  Google Scholar 

  14. Brunner G, Burger U, Castioni P, Kapetanidis I, Christen P (2000) A novel acylated flavonol glycoside isolated from Brunfelsia grandiflora ssp grandiflora. Structure elucidation by gradient accelerated NMR spectroscopy at 14T. Phytochem Anal 11(1):29–33. https://doi.org/10.1002/(SICI)1099-1565(200001/02)11:1<29::AID-PCA486>3.0.CO;2-K

    Article  CAS  Google Scholar 

  15. Almeida-Cortez JS, Melo-De-Pinna GFA (2006) Morphology and anatomy of a leaf mine in Vismia guianensis (Aubl.) Choisy (Clusiaceae) in a fragment of Brazilian Atlantic forest. Braz J Biol 66(2b):759–763. https://doi.org/10.1590/s1519-69842006000400021

    Article  CAS  PubMed  Google Scholar 

  16. Oliveira AH, de Oliveira GG, Carnevale Neto F, Portuondo DF, Batista-Duharte A, Carlos IZ (2017) Anti-inflammatory activity of Vismia guianensis (Aubl.) Pers. extracts and antifungal activity against Sporothrix schenckii. J Ethnopharmacol 195:266–274. https://doi.org/10.1016/j.jep.2016.11.030

    Article  CAS  PubMed  Google Scholar 

  17. Hussain H, Hussain J, Al-Harrasi A et al (2012) Chemistry and biology of genus Vismia. Pharm Biol 50(11):1448–1462. https://doi.org/10.3109/13880209.2012.680972

    Article  CAS  PubMed  Google Scholar 

  18. Vizcaya M, Morales A, Rojas J, Nuñez R (2012) A review on the chemical composition and pharmacological activities of Vismia genus (Guttiferae). Bol Latinoam Caribe Plantas Med Aromát 11:12–34

    CAS  Google Scholar 

  19. Martin F, Hay A-E, Cressend D et al (2008) Antioxidant C-Glucosylxanthones from the leaves of Arrabidaea patellifera. J Nat Prod 71(11):1887–1890. https://doi.org/10.1021/np800406q

    Article  CAS  PubMed  Google Scholar 

  20. Analia Torres C, Perez Zamora CM, Beatriz Nunez M, Maria Gonzalez A (2018) In vitro antioxidant, antilipoxygenase and antimicrobial activities of extracts from seven climbing plants belonging to the Bignoniaceae. J Integr Med 16(4):255–262. https://doi.org/10.1016/j.joim.2018.04.009

    Article  Google Scholar 

  21. da Rocha CQ, de-Faria FM, Marcourt L et al (2017) Gastroprotective effects of hydroethanolic root extract of Arrabidaea brachypoda: evidences of cytoprotection and isolation of unusual glycosylated polyphenols. Phytochemistry 135:93–105. https://doi.org/10.1016/j.phytochem.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  22. Pauletti PM, Da Silva BV, Young MCM (2003) Constituintes químicos de Arrabidaea samydoides (Bignoniaceae). Quim Nova 26(5):641–643. https://doi.org/10.1590/S0100-40422003000500003

    Article  CAS  Google Scholar 

  23. Abdelkawy KS, Balyshev ME, Elbarbry F (2017) A new validated HPLC method for the determination of quercetin: application to study pharmacokinetics in rats. Biomed Chromatogr 31(3). https://doi.org/10.1002/bmc.3819

  24. Rocha DP, Cardoso RM, Tormin TF, de Araujo WR, Munoz RAA, Richter EM, Angnes L (2018) Batch-injection analysis better than ever: new materials for improved electrochemical detection and on-site applications. Electroanalysis 30(7):1386–1399. https://doi.org/10.1002/elan.201800042

    Article  CAS  Google Scholar 

  25. Chamizo-Gonzalez F, Monago-Marana O, Galeano-Diaz T (2017) Determination of Quercetin and Luteolin in paprika samples by voltammetry and partial least squares calibration. Electroanalysis 29(12):2757–2765. https://doi.org/10.1002/elan.201700403

    Article  CAS  Google Scholar 

  26. Zou Y, Lou D, Dou K, He L, Dong Y, Wang S (2016) Amperometric tyrosinase biosensor based on boron-doped nanocrystalline diamond film electrode for the detection of phenolic compounds. J Solid State Electrochem 20(1):47–54. https://doi.org/10.1007/s10008-015-3003-8

    Article  CAS  Google Scholar 

  27. Richter EM, Tormin TF, Cunha RR, Silva WP, Pérez-Junquera A, Fanjul-Bolado P, Hernández-Santos D, Muñoz RAA (2016) A compact batch injection analysis cell for screen printed electrodes: a portable electrochemical system for on-site analysis. Electroanalysis 28(8):1856–1859. https://doi.org/10.1002/elan.201600008

    Article  CAS  Google Scholar 

  28. Manokaran J, Muruganantham R, Muthukrishnaraj A, Balasubramanian N (2015) Platinum- polydopamine @SiO2 nanocomposite modified electrode for the electrochemical determination of quercetin. Electrochim Acta 168:16–24. https://doi.org/10.1016/j.electacta.2015.04.016

    Article  CAS  Google Scholar 

  29. Lu D, Lin S, Wang L, Li T, Wang C, Zhang Y (2014) Sensitive detection of luteolin based on poly(diallyldimethylammonium chloride)-functionalized graphene-carbon nanotubes hybrid/β-cyclodextrin composite film. J Solid State Electrochem 18(1):269–278. https://doi.org/10.1007/s10008-013-2261-6

    Article  CAS  Google Scholar 

  30. Korotkova EI, Voronova OA, Dorozhko EV (2012) Study of antioxidant properties of flavonoids by voltammetry. J Solid State Electrochem 16(7):2435–2440. https://doi.org/10.1007/s10008-012-1707-6

    Article  CAS  Google Scholar 

  31. Han R, Cui L, Ai S, Yin H, Liu X, Qiu Y (2012) Amperometric biosensor based on tyrosinase immobilized in hydrotalcite-like compounds film for the determination of polyphenols. J Solid State Electrochem 16(2):449–456. https://doi.org/10.1007/s10008-011-1352-5

    Article  CAS  Google Scholar 

  32. Sun S, Zhang M, Li Y, He X (2013) A molecularly imprinted polymer with incorporated Graphene oxide for electrochemical determination of quercetin. SENSORS 13(5):5493–5506. https://doi.org/10.3390/s130505493

    Article  CAS  PubMed  Google Scholar 

  33. Zheng Y, Ye L, Yan L, Gao Y (2014) The electrochemical behavior and determination of quercetin in choline chloride/urea deep eutectic solvent electrolyte based on abrasively immobilized multi-wall carbon nanotubes modified electrode. Int J Electrochem Sci 9:238–248

    Google Scholar 

  34. Medvidović-Kosanović M, Šeruga M, Jakobek L, Novak I (2010) Electrochemical and antioxidant properties of (+)-catechin, quercetin and rutin. Croat Chem Acta 83:197–207

    Google Scholar 

  35. Corrêa Ribeiro GA, Quintino Da Rocha C, Tanaka AA, Santos Da Silva I (2018) A fast, direct, and sensitive analysis method for catechin determination in green tea by batch injection analysis with multiple-pulse amperometry (BIA-MPA). Anal Methods 10(17):2034–2040. https://doi.org/10.1039/c8ay00077h

    Article  CAS  Google Scholar 

  36. Niu X, Li X, Chen W, Li X, Weng W, Yin C, Dong R, Sun W, Li G (2018) Three-dimensional reduced graphene oxide aerogel modified electrode for the sensitive quercetin sensing and its application. Mater Sci Eng C Mater Biol Appl 89:230–236. https://doi.org/10.1016/j.msec.2018.04.015

    Article  CAS  PubMed  Google Scholar 

  37. Brett AMO, Ghica ME (2003) Electrochemical oxidation of quercetin. Electroanalysis 15(22):1745–1750. https://doi.org/10.1002/elan.200302800

    Article  CAS  Google Scholar 

  38. Oliveira GKF, Tormin TF, Montes RH d O et al (2016) Electrochemical oxidation of astaxanthin on glassy-carbon electrode and its amperometric determination using batch injection analysis (BIA). Electroanalysis 28(9):2143–2148. https://doi.org/10.1002/elan.201600176

    Article  CAS  Google Scholar 

  39. Freitas JM, Oliveira T d C, Gimenes DT et al (2016) Simultaneous determination of three species with a single-injection step using batch injection analysis with multiple pulse amperometric detection. Talanta 146:670–675. https://doi.org/10.1016/j.talanta.2015.06.048

    Article  CAS  PubMed  Google Scholar 

  40. Pereira PF, da Silva WP, Abarza Munoz RA, Richter EM (2016) A simple and fast batch injection analysis method for simultaneous determination of phenazopyridine, sulfamethoxazole, and trimethoprim on boron-doped diamond electrode. J Electroanal Chem 766:87–93. https://doi.org/10.1016/j.jelechem.2016.01.034

    Article  CAS  Google Scholar 

  41. Backes RS, Guedes TJ, dos Santos WTP, da Silva RAB (2017) Fast and simple determination of sildenafil citrate (viagra (r) and generics) using carbon screen-printed electrode in fia and bia systems with amperometric detection. Quim Nova 40:752–759. https://doi.org/10.21577/0100-4042.20170047

    Article  CAS  Google Scholar 

  42. Gimenes DT, Marra MC, De Freitas JM et al (2015) Simultaneous determination of captopril and hydrochlorothiazide on boron-doped diamond electrode by batch injection analysis with multiple pulse amperometric detection. Sensors Actuators B Chem 212:411–418. https://doi.org/10.1016/j.snb.2015.01.132

    Article  CAS  Google Scholar 

  43. Rana A, Baig N, Saleh TA (2019) Electrochemically pretreated carbon electrodes and their electroanalytical applications - a review. J Electroanal Chem 833:313–332. https://doi.org/10.1016/j.jelechem.2018.12.019

    Article  CAS  Google Scholar 

  44. Huang D, Cheng Y, Xu H, Zhang H, Sheng L, Xu H, Liu Z, Wu H, Fan S (2015) The determination of uric acid in human body fluid samples using glassy carbon electrode activated by a simple electrochemical method. J Solid State Electrochem 19(2):435–443. https://doi.org/10.1007/s10008-014-2614-9

    Article  CAS  Google Scholar 

  45. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108(7):2646–2687. https://doi.org/10.1021/cr068076m

    Article  CAS  PubMed  Google Scholar 

  46. Stefano JS, Dias AC, Arantes IVS, Costa BMC, Silva LAJ, Richter EM, Banks CE, Munoz RAA (2019) Batch-injection amperometric analysis on screen-printed electrodes: analytical system for high-throughput determination of pharmaceutical molecules. Electroanalysis 31:518–526. https://doi.org/10.1002/elan.201800725

    Article  CAS  Google Scholar 

  47. de Araujo WR, Cardoso TMG, da Rocha RG, Santana MHP, Muñoz RAA, Richter EM, Paixão TRLC, Coltro WKT (2018) Portable analytical platforms for forensic chemistry: a review. Anal Chim Acta 1034:1–21. https://doi.org/10.1016/j.aca.2018.06.014

    Article  CAS  PubMed  Google Scholar 

  48. Veloso WB, Corrêa Ribeiro GA, da Rocha CQ et al (2020) Flow-through amperometric determination of ampicillin using a copper electrode in a batch injection analysis system. Measurement 155:107516. https://doi.org/10.1016/j.measurement.2020.107516

    Article  Google Scholar 

Download references

Funding

The authors are grateful for the financial support provided by the Brazilian agencies: Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA) (grant numbers #Universal-01372/17 (LMFD), #Universal-00827/17 (AAT)), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant numbers 465389/2014-7 (AAT), #133321/2019-3 (WBV), #205220/2018-5 (ISS)), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iranaldo Santos da Silva or Auro Atsushi Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 142 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, G.A.C., da Rocha, C.Q., Veloso, W.B. et al. Flow-through amperometric methods for detection of the bioactive compound quercetin: performance of glassy carbon and screen-printed carbon electrodes. J Solid State Electrochem 24, 1759–1768 (2020). https://doi.org/10.1007/s10008-020-04599-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04599-x

Keywords

Navigation