Skip to main content

Advertisement

Log in

Self-supported hollow Co(OH)2/NiCo sulfide hybrid nanotube arrays as efficient electrocatalysts for overall water splitting

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Developing low-cost and earth-abundant electrocatalysts with high activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is highly desired but still remains a significant challenge. Herein, hollow cobalt hydroxide/NiCo sulfide hybrid (Co(OH)2/Ni-Co-S) nanotube arrays are synthesized on nickel foam (NF) through a simple hydrothermal method and subsequent sulfurization, which serve as efficient electrocatalysts for overall water splitting. The optimized Co(OH)2/Ni-Co-S-8h electrocatalyst requires overpotentials of 300 mV and 340 mV to reach current densities of 30 and 100 mA cm−2 for the OER in 1.0 M KOH, respectively. In addition, the optimized Co(OH)2/Ni-Co-S-8h electrocatalyst requires overpotentials of 148 mV and 254 mV to reach the current densities of 10 and 100 mA cm−2 for the HER in the same electrolyte, respectively. Furthermore, the electrolyzer used as efficient catalysts for overall water splitting requires cell voltage of 1.62 V to obtain 10 mA cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ardo S, Rivas DF, Modestino MA, Greiving VS, Abdi FF, Llado EA, Artero V, Ayers K, Battaglia C, Becker JP, Bederak D, Berger A, Buda F, Chinello E, Dam B, Di Palma V, Edvinsson T, Fujii K, Gardeniers H, Geerlings H, Hashemi SM, Haussener S, Houle F, Huskens J, James BD, Konrad K, Kudo A, Kunturu PP, Lohse D, Mei B, Miller EL, Moore GF, Muller J, Orchard KL, Rosser TE, Saadi FH, Schuttauf JW, Seger B, Sheehan SW, Smith WA, Spurgeon J, Tang MH, van de Krol R, PCK V, Westerik P (2018) Pathways to electrochemical solar-hydrogen technologies. Energy Environ Sci 11(10):2768–2783

    Article  CAS  Google Scholar 

  2. Zhang P, Zhao Y, Zhang X (2018) Functional and stability orientation synthesis of materials and structures in aprotic Li-O2 batteries. Chem Soc Rev 47(8):2921–3004

    Article  CAS  PubMed  Google Scholar 

  3. Ke F, Li Y, Zhang C, Zhu J, Chen P, Ju H, Xu Q (2018) MOG-derived porous FeCo/C nanocomposites as a potential platform for enhanced catalytic activity and lithium-ion batteries performance. J Colloid Interface Sci 522:283–290

    Article  CAS  PubMed  Google Scholar 

  4. Yang MQ, Wang J, Wu H, Ho GW (2018) Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 14(15):1703323

    Article  CAS  Google Scholar 

  5. Han X, Wu X, Deng Y, Liu J, Lu J, Zhong C, Hu W (2018) Ultrafine Pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv Energy Mater 8(24):1800935

    Article  CAS  Google Scholar 

  6. Wang J, Wei Z, Mao S, Li H, Wang Y (2018) Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ Sci 11(4):800–806

    Article  CAS  Google Scholar 

  7. Alia SM, Shulda S, Ngo C, Pylypenko S, Pivovar BS (2018) Iridium-based nanowires as highly active, oxygen evolution reaction electrocatalysts. ACS Catal 8(3):2111–2120

    Article  CAS  Google Scholar 

  8. Fan K, Chen H, Ji Y, Huang H, Claesson PM, Daniel Q, Philippe B, Rensmo H, Li F, Luo Y, Sun L (2016) Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat Commun 7(1):11981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu Z, Zou Z, Huang J, Gao F (2018) Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J Catal 358:243–252

    Article  CAS  Google Scholar 

  10. Liang H, Shi H, Zhang D, Ming F, Wang R, Zhuo J, Wang Z (2016) Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chem Mater 28(16):5587–5591

    Article  CAS  Google Scholar 

  11. Wu Y, Li F, Chen W, Xiang Q, Ma Y, Zhu H, Tao P, Song C, Shang W, Deng T, Wu J (2018) Coupling interface constructions of MoS2/Fe5Ni4S8 heterostructures for efficient electrochemical water splitting. Adv Mater 30(38):1803151

    Article  CAS  Google Scholar 

  12. Zhang Y, Rui K, Ma Z, Sun W, Wang Q, Wu P, Zhang Q, Li D, Du M, Zhang W, Lin H, Zhu J (2018) Cost-effective vertical carbon nanosheets/iron-based composites as efficient electrocatalysts for water splitting reaction. Chem Mater 30(14):4762–4769

    Article  CAS  Google Scholar 

  13. Yan H, Xie Y, Jiao Y, Wu A, Tian C, Zhang X, Wang L, Fu H (2018) Holey reduced graphene oxide coupled with an Mo2N-Mo2C heterojunction for efficient hydrogen evolution. Adv Mater 30(2):1704156

    Article  CAS  Google Scholar 

  14. Xue ZH, Su H, Yu QY, Zhang B, Wang HH, Li XH, Chen JS (2017) Janus Co/CoP nanoparticles as efficient mott-schottky electrocatalysts for overall water splitting in wide pH range. Adv Energy Mater 7(12):1602355

    Article  CAS  Google Scholar 

  15. Tang C, Zhang R, Lu W, He L, Jiang X, Asiri AM, Sun X (2017) Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv Mater 29(2):1602441

    Article  CAS  Google Scholar 

  16. Huang Z, Liu J, Xiao Z, Fu H, Fan W, Xu B, Dong B, Liu D, Dai F, Sun D (2018) A MOF-derived coral-like NiSe@NC nanohybrid: an efficient electrocatalyst for the hydrogen evolution reaction at all pH values. Nanoscale 10(48):22758–22765

    Article  CAS  PubMed  Google Scholar 

  17. Nai J, Lu Y, Yu L, Wang X, Lou XW (2017) Formation of Ni-Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Adv Mater 29(41):1703870

    Article  CAS  Google Scholar 

  18. Wan J, Wu J, Gao X, Li T, Hu Z, Yu H, Huang L (2017) Structure confined porous Mo2C for efficient hydrogen evolution. Adv Funct Mater 27(45):1703933

    Article  CAS  Google Scholar 

  19. Jia J, Xiong T, Zhao L, Wang F, Liu H, Hu R, Zhou J, Zhou W, Chen S (2017) Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 11(12):12509–12518

    Article  CAS  PubMed  Google Scholar 

  20. Tang C, Cheng N, Pu Z, Xing W, Sun X (2015) NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew Chem Int Ed 54(32):9351–9355

    Article  CAS  Google Scholar 

  21. Yan L, Cao L, Dai P, Gu X, Liu D, Li L, Wang Y, Zhao X (2017) Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Adv Funct Mater 27(40):1703455

    Article  CAS  Google Scholar 

  22. Li H, Chen S, Zhang Y, Zhang Q, Jia X, Gu L, Sun X, Song L, Wang X (2018) Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat Commun 9(1):2452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Han N, Yang KR, Lu Z, Li Y, Xu W, Gao T, Cai Z, Zhang Y, Batista VS, Liu W, Sun X (2018) Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat Commun 9(1):924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Guan C, Xiao W, Wu H, Liu X, Zang W, Zhang H, Ding J, Feng YP, Pennycook SJ, Wang J (2018) Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 48:73–80

    Article  CAS  Google Scholar 

  25. Zhu YP, Ma TY, Jaroniec M, Qiao SZ (2017) Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew Chem Int Ed 56(5):1324–1328

    Article  CAS  Google Scholar 

  26. Zhang J, Dong C, Wang Z, Zhang C, Gao H, Niu J, Zhang Z (2018) Flexible, self-supported hexagonal β-Co(OH)2 nanosheet arrays as integrated electrode catalyzing oxygen evolution reaction. Electrochim Acta 284:495–503

    Article  CAS  Google Scholar 

  27. Liang Z, Yang Z, Huang Z, Qi J, Chen M, Zhang W, Zheng H, Sun J, Cao R (2018) Novel insight into the epitaxial growth mechanism of six-fold symmetrical β-Co(OH)2/Co(OH)F hierarchical hexagrams and their water oxidation activity. Electrochim Acta 271:526–536

    Article  CAS  Google Scholar 

  28. Wan S, Qi J, Zhang W, Wang W, Zhang S, Liu K, Zheng H, Sun J, Wang S, Cao R (2017) Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv Mater 29(28):1700286

    Article  CAS  Google Scholar 

  29. Lu F, Zhou M, Li W, Weng Q, Li C, Xue Y, Jiang X, Zeng X, Bando Y, Golberg D (2016) Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 26:313–323

    Article  CAS  Google Scholar 

  30. Liu C, Wu X (2018) NiCo2S4 nanotube arrays grown on flexible carbon fibers as battery-type electrodes for asymmetric supercapacitors. Mater Res Bull 103:55–62

    Article  CAS  Google Scholar 

  31. Jiang Y, Qian X, Zhu C, Liu H, Hou L (2018) Nickel cobalt sulfide double-shelled hollow nanospheres as superior bifunctional electrocatalysts for photovoltaics and alkaline hydrogen evolution. ACS Appl Mater Interfaces 10(11):9379–9389

    Article  CAS  PubMed  Google Scholar 

  32. Du X, Yang Z, Li Y, Gong Y, Zhao M (2018) Controlled synthesis of Ni(OH)2/Ni3S2 hybrid nanosheet arrays as highly active and stable electrocatalysts for water splitting. J Mater Chem A 6(16):6938–6946

    Article  CAS  Google Scholar 

  33. Xu Q, Jiang H, Zhang H, Hu Y, Li C (2019) Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl Catal B: Environ 242:60–66

    Article  CAS  Google Scholar 

  34. Xiang K, Guo J, Xu J, Qu T, Zhang Y, Chen S, Hao P, Li M, Xie M, Guo X, Ding W (2018) Surface sulfurization of NiCo-layered double hydroxide nanosheets enable superior and durable oxygen evolution electrocatalysis. ACS Appl Energy Mater 1(8):4040–4049

    Article  CAS  Google Scholar 

  35. Sun Y, Zhang T, Li X, Liu D, Liu G, Zhang X, Lyu X, Cai W, Li Y (2017) Mn doped porous cobalt nitride nanowires with high activity for water oxidation under both alkaline and neutral conditions. Chem Commun 53(99):13237–13240

    Article  CAS  Google Scholar 

  36. Zhang Y, Ouyang B, Xu J, Jia G, Chen S, Rawat RS, Fan HJ (2016) Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew Chem Int Ed 55(30):8670–8674

    Article  CAS  Google Scholar 

  37. Zhang G, Feng YS, Lu WT, He D, Wang CY, Li YK, Wang XY, Cao FF (2018) Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal 8(6):5431–5441

    Article  CAS  Google Scholar 

  38. Chen P, Zhou T, Zhang M, Tong Y, Zhong C, Zhang N, Zhang L, Wu C, Xie Y (2017) 3D nitrogen-anion-decorated nickel sulfides for highly efficient overall water splitting. Adv Mater 29(30):1701584

    Article  CAS  Google Scholar 

  39. Wu Y, Liu Y, Li GD, Zou X, Lian X, Wang D, Sun L, Asefa T, Zou X (2017) Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3-xS4 coupled Ni3S2 nanosheet arrays. Nano Energy 35:161–170

    Article  CAS  Google Scholar 

  40. Liu Y, Liang X, Gu L, Zhang Y, Li GD, Zou X, Chen JS (2018) Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat Commun 9(1):2609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhang H, Li X, Hähnel A, Naumann V, Lin C, Azimi S, Schweizer SL, Maijenburg AW, Wehrspohn RB (2018) Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv Funct Mater 28(14):1706847

    Article  CAS  Google Scholar 

  42. Li J, Wei G, Zhu Y, Xi Y, Pan X, Ji Y, Zatovsky LV, Han W (2017) Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J Mater Chem A 5(28):14828–14837

    Article  CAS  Google Scholar 

  43. Fu W, Zhao C, Han W, Liu Y, Zhao H, Ma Y, Xie E (2015) Cobalt sulfide nanosheets coated on NiCo2S4 nanotube arrays as electrode materials for high-performance supercapacitors. J Mater Chem A 3(19):10492–10497

    Article  CAS  Google Scholar 

  44. Chen H, Jiang J, Zhang L, Xia D, Zhao Y, Guo D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257

    Article  CAS  Google Scholar 

  45. Syed JA, Ma J, Zhu B, Tang S, Meng X (2017) Hierarchical multicomponent electrode with interlaced Ni(OH)2 nanoflakes wrapped zinc cobalt sulfide nanotube arrays for sustainable high-performance supercapacitors. Adv Energy Mater 7(22):1701228

    Article  CAS  Google Scholar 

  46. Chen R, Wang H-Y, Miao J, Yang H, Liu B (2015) A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires. Nano Energy 11:333–340

    Article  CAS  Google Scholar 

  47. Yu X, Zhang M, Tong Y, Li C, Shi G (2018) A large-scale graphene-bimetal film electrode with an ultrahigh mass catalytic activity for durable water splitting. Adv Energy Mater 8(21):1800403

    Article  CAS  Google Scholar 

  48. Liu W, Liu H, Dang L, Zhang H, Wu X, Yang B, Li Z, Zhang X, Lei L, Jin S (2017) Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Adv Funct Mater 27(14):1603904

    Article  CAS  Google Scholar 

  49. Chen P, Zhou T, Chen M, Tong Y, Zhang N, Peng X, Chu W, Wu X, Wu C, Xie Y (2017) Enhanced catalytic activity in nitrogen-anion modified metallic cobalt disulfide porous nanowire arrays for hydrogen evolution. ACS Catal 7(11):7405–7411

    Article  CAS  Google Scholar 

  50. Xue Y, Zuo Z, Li Y, Liu H, Li Y (2017) Graphdiyne-supported NiCo2S4 nanowires: a highly active and stable 3D bifunctional electrode material. Small 13(31):1700936

    Article  CAS  Google Scholar 

  51. Tang C, Zhang R, Lu W, Wang Z, Liu D, Hao S, Du G, Asiri AM, Sun X (2017) Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew Chem Int Ed 56(3):842–846

    Article  CAS  Google Scholar 

  52. Yu L, Xia BY, Wang X, Lou XW (2016) General formation of M-MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv Mater 28(1):92–97

    Article  CAS  PubMed  Google Scholar 

  53. Sidhureddy B, Dondapati JS, Chen A (2019) Shape-controlled synthesis of Co3O4 for enhanced electrocatalysis of the oxygen evolution reaction. Chem Commun 55(25):3626–3629

    Article  CAS  Google Scholar 

  54. Sun F, Li C, Li B, Lin Y (2017) Amorphous MoSx developed on Co(OH)2 nanosheets generating efficient oxygen evolution catalysts. J Mater Chem A 5(44):23103–23114

    Article  CAS  Google Scholar 

  55. Zhang K, Zhang G, Qu J, Liu H (2018) Disordering the atomic structure of Co(II) oxide via B-doping: an efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts. Small 14(41):1802760

    Article  CAS  Google Scholar 

  56. Dou Y, Liao T, Ma Z, Tian D, Liu Q, Xiao F, Sun Z, Kim JH, Dou SX (2016) Graphene-like holey Co3O4 nanosheets as a highly efficient catalyst for oxygen evolution reaction. Nano Energy 30:267–275

    Article  CAS  Google Scholar 

  57. Hai G, Jia X, Zhang K, Liu X, Wu Z, Wang G (2018) High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets. Nano Energy 44:345–352

    Article  CAS  Google Scholar 

  58. Liang Q, Zhong L, Du C, Luo Y, Zheng Y, Li S, Yan Q (2018) Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets. Nano Energy 47:257–265

    Article  CAS  Google Scholar 

  59. Hua Y, Jiang H, Jiang H, Zhang H, Li C (2018) Hierarchical porous CoS2 microboxes for efficient oxygen evolution reaction. Electrochim Acta 278:219–225

    Article  CAS  Google Scholar 

  60. Xu Q, Jiang H, Zhang H, Jiang H, Li C (2018) Phosphorus-driven mesoporous Co3O4 nanosheets with tunable oxygen vacancies for the enhanced oxygen evolution reaction. Electrochim Acta 259:962–967

    Article  CAS  Google Scholar 

  61. Rui K, Zhao G, Chen Y, Lin Y, Zhou Q, Chen J, Zhu J, Sun W, Huang W, Dou SX (2018) Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv Funct Mater 28(26):1801554

    Article  CAS  Google Scholar 

  62. Cao L-M, Wang J-W, Zhong D-C, Lu T-B (2018) Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction. J Mater Chem A 6(7):3224–3230

    Article  CAS  Google Scholar 

  63. Li Y, Yan D, Zou Y, Xie C, Wang Y, Zhang Y, Wang S (2017) Rapidly engineering the electronic properties and morphological structure of NiSe nanowires for the oxygen evolution reaction. J Mater Chem A 5(48):25494–25500

    Article  CAS  Google Scholar 

  64. Zhang H, Chen B, Jiang H, Duan X, Zhu Y, Li C (2018) Boosting water oxidation electrocatalysts with surface engineered amorphous cobalt hydroxide nanoflakes. Nanoscale 10(27):12991–12996

    Article  CAS  PubMed  Google Scholar 

  65. Xiao K, Zhou L, Shao M, Wei M (2018) Fabrication of (Ni,Co)0.85Se nanosheet arrays derived from layered double hydroxides toward largely enhanced overall water splitting. J Mater Chem A 6(17):7585–7591

    Article  CAS  Google Scholar 

  66. Lin J, Wang H, Zheng X, Du Y, Zhao C, Qi J, Cao J, Fei W, Feng J (2018) Controllable synthesis of core-branch Ni3S2/Co9S8 directly on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. J Power Sources 401:329–335

    Article  CAS  Google Scholar 

  67. Dai Z, Geng H, Wang J, Luo Y, Li B, Zong Y, Yang J, Guo Y, Zheng Y, Wang X, Yan Q (2017) Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 11(11):11031–11040

    Article  CAS  PubMed  Google Scholar 

  68. Fang Z, Peng L, Lv H, Zhu Y, Yan C, Wang S, Kalyani P, Wu X, Yu G (2017) Metallic transition metal selenide holey nanosheets for efficient oxygen evolution electrocatalysis. ACS Nano 11(9):9550–9557

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support from National Key R&D Program of China (2016YFB0302800), Natural Science Foundation of Jiangsu Province (BK20180495), the Natural Science Foundation of China (50972060), the Weapon Research Support Fund (62201070804), Qing Lan Project, Environmental Protection Scientific Research Project of Jiangsu Province (2016056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubing Hu or Wei Jiang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 8951 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Guo, X., Hao, G. et al. Self-supported hollow Co(OH)2/NiCo sulfide hybrid nanotube arrays as efficient electrocatalysts for overall water splitting. J Solid State Electrochem 23, 2627–2637 (2019). https://doi.org/10.1007/s10008-019-04362-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04362-x

Keywords

Navigation