Skip to main content

Advertisement

Log in

Waxberry-like hierarchical NiCo2O4-decorated carbon microspheres as efficient catalyst for Li-O2 batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Rechargeable Li-O2 batteries have aroused wide concern due to the theoretically high value for specific energy density. However, exploring suitable catalysts holds the key to their development and commercialization. In this work, unprecedented waxberry-like hierarchical NiCo2O4 (NCO) nanorods deposited on carbon microspheres (CMs) (NCO@CMs) were synthesized by a hydrothermal method and heat treatment. When applied as the cathode catalysts, the Li-O2 batteries with NCO@CMs show a high initial discharge capacity of 6489.5 mAh g−1 and predominant coulombic efficiency of 93.7% at a current density of 200 mAg−1. Meanwhile, significantly prolonged cycle lifespan (over 90 cycles with a cutoff capacity of 1000 mAh g−1) and stable platforms have been maintained in the charge/discharge process. The improved electrochemical performance is attributed to the unique spatial structure of NCO@CMs which is favorable for the transport of Li+ and oxygen and provides more space for the deposition and dissolution of discharged products. The combination of the carbon base and the NCO nanorods can guarantee high conductivity and retain the structural integrity of the catalyst during the cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1):19–29

    Article  CAS  Google Scholar 

  2. Li Y, Wang XG, Dong SM, Chen X, Cui GL (2016) Recent advances in non-aqueous electrolyte for rechargeable Li-O2 batteries. Adv Energy Mater 6(18):1600751

    Article  CAS  Google Scholar 

  3. Lu J, Li L, Park JB, Sun YK, Wu F, Amine K (2014) Aprotic and aqueous Li–O2 batteries. Chem Rev 114(11):5611–5640

    Article  CAS  PubMed  Google Scholar 

  4. Grey CP, Tarascon JM (2017) Sustainability and in situ monitoring in battery development. Nat Mater 16(1):45–56

    Article  CAS  Google Scholar 

  5. Lu YC, Gallant BM, Kwabi DG, Harding JR, Mitchell RR, Whittingham MS, Yang SH (2013) Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ Sci 6(3):750

    Article  CAS  Google Scholar 

  6. Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43(22):7746–7786

    Article  CAS  PubMed  Google Scholar 

  7. Sun B, Chen SQ, Liu H, Wang GX (2015) Mesoporous carbon nanocube architecture for high-performance lithium–oxygen batteries. Adv Funct Mater 25(28):4436–4444

    Article  CAS  Google Scholar 

  8. Shen JR, Wu HT, Sun W, Qiao JS, Cai HQ, Wang ZH, Sun KN (2019) In-situ nitrogen-doped hierarchical porous hollow carbon spheres anchored with iridium nanoparticles as efficient cathode catalysts for reversible lithium-oxygen batteries. Chem Eng J 358:340–350

    Article  CAS  Google Scholar 

  9. Ren XZ, Huang MJ, Luo S, Li YL, Deng LB, Mi HM, Sun LN, Zhang PX (2018) PdNi alloy decorated 3D hierarchically N, S co-doped macro–mesoporous carbon composites as efficient free-standing and binder-free catalysts for Li–O2 batteries. J Mater Chem A 6(23):10856–10867

    Article  CAS  Google Scholar 

  10. Ottakam Thotiyl MM, Freunberger SA, Peng ZQ, Bruce PG (2012) The carbon electrode in nonaqueous Li–O2 cells. J Am Chem Soc 135:494–500

    Article  CAS  PubMed  Google Scholar 

  11. Gallant BM, Mitchell RR, Kwabi DG, Zhou J, Zuin L, Thompson CV, Yang SH (2012) Chemical and morphological changes of Li–O2 battery electrodes upon cycling. J Phys Chem C 116(39):20800–20805

    Article  CAS  Google Scholar 

  12. Zhang RH, Zhao TS, Tan P, Wu MC, Jiang HR (2017) Ruthenium dioxide-decorated carbonized tubular polypyrrole as a bifunctional catalyst for non-aqueous lithium-oxygen batteries. Electrochim Acta 257:281–289

    Article  CAS  Google Scholar 

  13. Sun B, Munroe P, Wang GX (2013) Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance. Sci Rep 3(1):2247

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang P, Wang RT, He M, Lang JW, Xu S, Yan XB (2016) 3D hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries. Adv Funct Mater 26(9):1354–1364

    Article  CAS  Google Scholar 

  15. Hyun S, Shanmugam S (2017) Mesoporous Co-CoO/N-CNR nanostructures as high-performance air cathode for lithium-oxygen batteries. J Power Sources 354:48–56

    Article  CAS  Google Scholar 

  16. Wang F, Wu XW, Shen C, Wen ZY (2016) Facile synthesis of Fe@Fe2O3 core-shell nanowires as O2 electrode for high-energy Li-O2 batteries. J Solid State Electrochem 20(7):1831–1836

    Article  CAS  Google Scholar 

  17. Zahoor A, Christy M, Kim Y, Arul A, Lee YS, Nahm KS (2016) Carbon/titanium oxide supported bimetallic platinum/iridium nanocomposites as bifunctional electrocatalysts for lithium-air batteries. J Solid State Electrochem 20:1397–1404

    Article  CAS  Google Scholar 

  18. Qiao XC, Jin JT, Fan HB, Li YW, Liao SJ (2017) In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution. J Mater Chem A 5(24):12354–12360

    Article  CAS  Google Scholar 

  19. Lyu ZY, Zhang J, Wang LJ, Yuan KD, Luan YP, Xiao P, Chen W (2016) CoS2 nanoparticles–graphene hybrid as a cathode catalyst for aprotic Li–O2 batteries. RSC Adv 6(38):31739–31743

    Article  CAS  Google Scholar 

  20. Lim HD, Song H, Kim J, Gwon H, Bae Y, Park KY, Hong J, Kim H, Kim T, Kim YH, Lepró X, Ovalle-Robles R, Baughman RH, Kang K (2014) Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew Chem Int Ed 53(15):3926–3931

    Article  CAS  Google Scholar 

  21. Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek J (2014) TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J Am Chem Soc 136(42):15054–15064

    Article  CAS  PubMed  Google Scholar 

  22. Peng SJ, Hu YX, Li LL, Han XP, Cheng FY, Srinivasan M, Yan QY, Ramakrishna S, Chen J (2015) Controlled synthesis of porous spinel cobaltite core-shell microspheres as high-performance catalysts for rechargeable Li–O2 batteries. Nano Energy 13:718–726

    Article  CAS  Google Scholar 

  23. Liu B, Yan PF, Xu W, Zheng JM, He Y, Luo LL, Bowden ME, Wang CM, Zhang JG (2016) Electrochemically formed ultrafine metal oxide nanocatalysts for high-performance lithium–oxygen batteries. Nano Lett 16(8):4932–4939

    Article  CAS  PubMed  Google Scholar 

  24. Liu SX, Hu LF, Xu XJ, Al-Ghamdi AA, Fang XS (2015) Nickel cobaltite nanostructures for photoelectric and catalytic applications. Small 11(34):4267–4283

    Article  CAS  PubMed  Google Scholar 

  25. Gao Z, Yang WL, Wang J, Song NN, Li XD (2015) Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy 13:306–317

    Article  CAS  Google Scholar 

  26. Zhang GQ, Lou XWD (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25(7):976–979

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Feng XH, Nie Y, Chen SG, Shi F, Xiong K, Ding W, Qi XQ, Hu JS, Wei ZD, Wan LJ, Xia MR (2015) Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2. ACS Catal 5(8):4825–4832

    Article  CAS  Google Scholar 

  28. Gao R, Liu L, Hu ZB, Zhang P, Cao XZ, Wang BY, Liu XF (2015) The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li–O2 batteries. J Mater Chem A 3(34):17598–17605

    Article  CAS  Google Scholar 

  29. Liu DL, Zhang C, Yu YY, Shi YM, Yu Y, Niu ZQ, Zhang B (2018) Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Res 11(2):603–613

    Article  CAS  Google Scholar 

  30. Sennu P, Park HS, Park KU, Aravindan V, Nahm KS, Lee YS (2017) Formation of NiCo2O4 rods over Co3O4 nanosheets as efficient catalyst for Li–O2 batteries and water splitting. J Catal 349:175–182

    Article  CAS  Google Scholar 

  31. Liu GX, Zhang L, Wang SQ, Ding LX, Wang HH (2017) Hierarchical NiCo2O4 nanosheets on carbon nanofiber films for high energy density and long-life Li–O2 batteries. J Mater Chem A 5(28):14530–14536

    Article  CAS  Google Scholar 

  32. Liu LL, Wang J, Hou YY, Chen J, Liu HK, Wang JZ, Wu YP (2016) Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries. Small 12:602–611

    Article  CAS  PubMed  Google Scholar 

  33. Agyeman DA, Park M, Kang YM (2017) Pd-impregnated NiCo2O4 nanosheets/porous carbon composites as a free-standing and binder-free catalyst for a high energy lithium–oxygen battery. J Mater Chem A 5(42):22234–22241

    Article  CAS  Google Scholar 

  34. Shen C, Wen ZY, Wang F, Rui K, Lu Y, Wu XW (2015) Wave-like free-standing NiCo2O4 cathode for lithium–oxygen battery with high discharge capacity. J Power Sources 294:593–601

    Article  CAS  Google Scholar 

  35. Xue HR, Mu XW, Tang J, Fan XL, Gong H, Wang T, He JP, Yamauchi Y (2016) A nickel cobaltate nanoparticle-decorated hierarchical porous N-doped carbon nanofiber film as a binder-free self-supported cathode for nonaqueous Li–O2 batteries. J Mater Chem A 4(23):9106–9112

    Article  CAS  Google Scholar 

  36. Shen C, Xie JX, Liu T, Zhang M, Andrei P, Dong LY, Hendrickson M, Plichta EJ, Zheng JP (2018) Influence of pore size on discharge capacity in Li-air batteries with hierarchically macroporous carbon nanotube foams as cathodes. J Electrochem Soc 165(11):A2833–A2839

    Article  CAS  Google Scholar 

  37. Shao YY, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang JG, Wang Y, Liu J (2013) Making Li-air batteries rechargeable: material challenges. Adv Funct Mater 23(8):987–1004

    Article  CAS  Google Scholar 

  38. Zhou QW, Xing JC, Gao YF, Lv XJ, He YM, Guo ZH, Li YM (2014) Ordered assembly of NiCo2O4 multiple hierarchical structures for high-performance pseudocapacitors. ACS Appl Mater Interfaces 6:11394–−11402

    Article  CAS  PubMed  Google Scholar 

  39. Liu MC, Kong LB, Lu C, Ma XJ, Li XM, Luo YC, Kang L (2013) Design and synthesis of CoMoO4–NiMoO4xH2O bundles with improved electrochemical properties for supercapacitors. J Mater Chem A 1(4):1380–1387

    Article  CAS  Google Scholar 

  40. Yu XY, Yao X, Luo T, Jia Y, Liu JH, Huang XJ (2014) Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications. ACS Appl Mater Interfaces 6(5):3689–3695

    Article  CAS  PubMed  Google Scholar 

  41. Pu J, Wang J, Jin XQ, Cui FL, Sheng EH, Wang ZH (2013) Porous hexagonal NiCo2O4 nanoplates as electrode materials for supercapacitors. Electrochim Acta 106:226–234

    Article  CAS  Google Scholar 

  42. Liu XF, Hao CC, Jiang H, Zeng M, Yu RH (2017) Hierarchical NiCo2O4/Co3O4/NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. J Mater Chem C 5(15):3770–3778

    Article  CAS  Google Scholar 

  43. Wang J, Fu Y, Xu YJ, Wu J, Tian JH, Yang RZ (2016) Hierarchical NiCo2O4 hollow nanospheres as high efficient bi-functional catalysts for oxygen reduction and evolution reactions. Int J Hydrog Energy 41(21):8847–8854

    Article  CAS  Google Scholar 

  44. Zhao Q, Wu CX, Cong LN, Zhang YH, Sun GR, Xie HM, Sun LQ, Liu J (2017) Yolk–shell Co2CrO4 nanospheres as highly active catalysts for Li–O2 batteries: understanding the electrocatalytic mechanism. J Mater Chem A 5(2):544–553

    Article  CAS  Google Scholar 

  45. Peng SJ, Gong F, Li LL, Yu DS, Ji DX, Zhang TR, Hu Z, Zhang ZQ, Chou SL, Du YH, Ramakrishna S (2018) Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J Am Chem Soc 140(42):13644–13653

    Article  CAS  PubMed  Google Scholar 

  46. Bao J, Zhang XD, Fan B, Zhang JJ, Zhou M, Yang WL, Hu X, Wang H, Pan BC, Xie Y (2015) Ultrathin spinel-structured Nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem 127(25):7507–7512

    Article  Google Scholar 

  47. Luo SQ, Sun WW, Ke JH, Wang YQ, Liu SK, Hong XB, Li YJ, Chen YF, Xie W, Zheng CM (2018) A 3D conductive network of porous carbon nanoparticles interconnected with carbon nanotubes as the sulfur host for long cycle life lithium–sulfur batteries. Nanoscale 10(47):22601–22611

    Article  CAS  PubMed  Google Scholar 

  48. Liu YP, Yu GT, Li GD, Sun YH, Asefa T, Chen W, Zou XX (2015) Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem Int Ed 54(37):10752–10757

    Article  CAS  Google Scholar 

  49. Liang YY, Wang HL, Diao P, Chang W, Hong GS, Li YG, Gong M, Xie LM, Zhou JG, Wang J, Regier TZ, Wei F, Dai HJ (2012) Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J Am Chem Soc 134(38):15849–15857

    Article  CAS  PubMed  Google Scholar 

  50. Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium–air battery. Nat Chem 4(7):579–585

    Article  CAS  PubMed  Google Scholar 

  51. McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J Am Chem Soc 133(45):18038–18041

    Article  CAS  PubMed  Google Scholar 

  52. Shen C, Wen ZY, Wang F, Wu XW, Chen CH (2016) The influence of electrode microstructure on the performance of free-standing cathode for aprotic lithium-oxygen battery. Jom-Us 68(10):2585–2592

    Article  CAS  Google Scholar 

  53. Chen X, Kuang P, Chen CG, Zhang XH, Huang T, Zhang LJ, Yu AS (2018) Hierarchical porous nickel cobaltate nanotube as electrocatalyst for lithium-oxygen batteries. Int J Electrochem Sci 13:3309–3316

    Article  CAS  Google Scholar 

  54. Giacco D, Marrani AG, Brutti S (2018) Enhancement of the performance in Li-O2 cells of a NiCo2O4 based porous positive electrode by Cr (III) doping. Mater Lett 224:113–117

    Article  CAS  Google Scholar 

  55. Yang ZD, Chang ZW, Xu JJ, Yang XY, Zhang XB (2017) CeO2@NiCo2O4 nanowire arrays on carbon textiles as high performance cathode for Li-O2 batteries. SCIENCE CHINA Chem 60(12):1540–1545

    Article  CAS  Google Scholar 

  56. Tu FF, Xie J, Zhang SC, Cao GS, Zhu TJ, Zhao XB (2015) Mushroom-like au/NiCo2O4 nanohybrids as high-performance binder-free catalytic cathodes for lithium–oxygen batteries. J Mater Chem A 3(10):5714–5721

    Article  CAS  Google Scholar 

  57. Sadighi Z, Huang JQ, Qin L, Yao SS, Cui J, Kim JK (2017) Positive role of oxygen vacancy in electrochemical performance of CoMn2O4 cathodes for Li-O2 batteries. J Power Sources 365:134–147

    Article  CAS  Google Scholar 

  58. Ryu WH, Gittleson FS, Li JY, Tong X, Taylor AD (2016) A new design strategy for observing Lithium oxide growth-evolution interactions using geometric catalyst positioning. Nano Lett 16(8):4799–4806

    Article  CAS  PubMed  Google Scholar 

  59. Zhang YL, Cui QH, Zhang XM, McKee WC, Xu Y, Ling SG, Li H, Zhong GM, Yang Y, Peng ZQ (2016) Amorphous Li2O2: chemical synthesis and electrochemical properties. Angew Chem Int Ed 55(36):10717–10721

    Article  CAS  Google Scholar 

  60. Cui B, Lin H, Li JB, Li X, Yang J, Tao J (2008) Core-ring structured NiCo2O4 Nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv Funct Mater 18(9):1440–1447

    Article  CAS  Google Scholar 

  61. Yuan H, Li JT, Yang W, Zhuang ZC, Zhao Y, He L, Xu L, Liao XB, Zhu RQ, Mai LQ (2018) Oxygen vacancy-determined highly efficient oxygen reduction in NiCo2O4 /hollow carbon spheres. ACS Appl Mater Interfaces 10(19):16410–16417

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (20603024) and the Open Project of Key Lab Adv. Energy Mat. Chem. (Nankai Univ.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Qin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1057 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Qin, X., Hou, L. et al. Waxberry-like hierarchical NiCo2O4-decorated carbon microspheres as efficient catalyst for Li-O2 batteries. J Solid State Electrochem 23, 1359–1369 (2019). https://doi.org/10.1007/s10008-019-04222-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04222-8

Keywords

Navigation