Skip to main content

Advertisement

Log in

Capacitance characteristic of PEDOT electrodeposited on different substrates

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Poly(3,4-ethylenedioxythiophene) (PEDOT) has been electrochemically deposited on carbon paper (CP), stainless steel mesh (SSM), stainless steel (SS), and indium tin oxide (ITO) by unipolar-pulsed method. The surface morphology, micro-structure, and electrochemical capacitance for PEDOT/substrates were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and electrochemical techniques. The electrochemical capacity measurements of the PEDOT/CP electrode in 0.5 M H2SO4 shows high mass-specific capacitance of 126.24 F/g at a 1 mA/cm2, which is consistent with the specific capacitance of 126.75 F/g at 5 mV/s. Compared with PEDOT/SSM, PEDOT/SS, and PEDOT/ITO, PEDOT/CP electrode shows better capacitive performance, which presents good rate performance of 76.78% at 5 mA/cm2 and charge-discharge stability with the capacitance retention rate of 80.57% for 5000 cycles. SEM result shows PEDOT maintained the spindle-like structure along with the threads of each carbon fiber, which are densely packed and randomly oriented forming the porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anothumakkool B, Soni R, Bhange SN, Kurungot S (2015) Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ Sci 8(4):1339–1347

    Article  CAS  Google Scholar 

  2. Sohn JS, Patil UM, Kang S, Kang S, Jun SC (2015) Impact of different nanostructures of a PEDOT decorated 3D multilayered graphene foam by chemical methods on supercapacitive performance. RSC Adv 5(130):107864–107871

    Article  CAS  Google Scholar 

  3. Chen Y, Xu JH, Yang YJ, Li SB, Yang WY, Peng TJ, Mao XL, Zhao YT (2015) PEDOT: PSS/graphene/PEDOT ternary film for high performance electrochemical electrode. J Mater Sci Mater Electron 26:8292–8300

    Article  CAS  Google Scholar 

  4. Meng YN, Jin L, Cai B, Wang ZL (2017) Facile fabrication of flexible core-shell graphene/ conducting polymer microfibers for fibriform supercapacitors. RSC Adv 7(61):38187–38192

    Article  CAS  Google Scholar 

  5. Zhou HH, Zhi XM (2017) Ternary composite electrodes based on poly(3,4–ethylenedioxythiophene)/carbon nanotubes-carboxyl graphene for improved electrochemical capacitive performances. Synth Met 234:139–144

    Article  CAS  Google Scholar 

  6. Abdah MAAM, Zubair NA, Azman NHN, Sulaiman Y (2017) Fabrication of PEDOT coated PVA-GO nanofiber for supercapacitor. Mater Chem Phys 192:161–169

    Article  Google Scholar 

  7. Ö sterholm AM, Ponder JF, Kerszulis JA, Reynolds JR (2016) Solution processed PEDOT analogues in electrochemical supercapacitors. ACS Appl Mater Interfaces 8(21):13492–13498

    Article  Google Scholar 

  8. Rajesh M, Raj CJ, Manikandan R, Kim BC, Park SY, Yu KH (2017) A high performance PEDOT/PEDOT symmetric supercapacitor by facile in-situ hydrothermal polymerization of PEDOT nanostructures on flexible carbon fibre cloth electrodes. Mater Today Energy 6:96–104

    Article  Google Scholar 

  9. Alamro T, Ram MK (2017) Polyethylenedioxythiophene and molybdenum disulfide nanocomposite electrodes for supercapacitor applications. Electrochim Acta 235:623–631

    Article  CAS  Google Scholar 

  10. Xie YB, Du HX, Xia C (2015) Porous poly(3,4-ethylenedioxythiophene) nanoarray used for flexible supercapacitor. Microporous Mesoporous Mater 204:163–172

    Article  CAS  Google Scholar 

  11. Hür E, Varol GA, Arslan A (2013) The study of polythiophene, poly(3-methylthiophene) and poly(3,4-ethylenedioxythiophene) on pencil graphite electrode as an electrode active material for supercapacitor applications. Synth Met 184:16–22

    Article  Google Scholar 

  12. Sahoo H, Park JW, Cardona RA, Avilés JS (2013) Electrochemical characterization of poly-(3,4 propylenedioxythiophene) pseudo-capacitor. J Phys: Conf Ser 421:12007–12013

    Google Scholar 

  13. Damlin P, Suominen M, Heinonen M, Kvarnström C (2015) Non-covalent modification of graphene sheets in PEDOT composite materials by ionic liquids. Carbon 93:533–543

    Article  CAS  Google Scholar 

  14. Ates M, Serin MA, Ekmen I, Ertas YN (2015) Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym Bull 72(10):2573–2589

    Article  CAS  Google Scholar 

  15. Tang PY, Han LJ, Zhang L, Wang SJ, Feng W, Xu GQ, Zhang L (2015) Controlled construction of hierarchical nanocomposites consisting of MnO2 and PEDOT for high-performance supercapacitor applications. Chem Electro Chem 2:949–957

    CAS  Google Scholar 

  16. Amoura D, Jiménez MS, Estrany F, Makhloufi L, Alemán C (2015) Clay incorporation at the dielectric layer of multilayer polymer films for electrochemical activation. Eur Polym J 69:296–307

    Article  CAS  Google Scholar 

  17. Reddy BN, Mukkabla R, Deepa M, Ghosal P (2015) Dual purpose poly(3,4-ethylenedioxypyrrole)/vanadium pentoxide nanobelt hybrids in photoelectrochromic cells and supercapacitors. RSC Adv 5(40):31422–31433

    Article  CAS  Google Scholar 

  18. Liew SY, Thielemans W, Walsh DA (2014) Polyaniline and poly(ethylenedioxythiophene)-cellulose nanocomposite electrodes for supercapacitors. J Solid State Electrochem 18(12):3307–3315

    Article  CAS  Google Scholar 

  19. Bianchini C, Curulli A, Pasquali M, Zane D (2014) Determination of caffeic acid in wine using PEDOT film modified electrode. Food Chem 156:81–86

    Article  CAS  Google Scholar 

  20. Anothumakkool B, Torris AAT, Bhange SN, Badiger MV, Kurungot S (2014) Electrodeposited polyethylenedioxythiophene with infiltrated gel electrolyte interface: a close contest of an all-solid-state supercapacitor with its liquid-state counterpart. Nanoscale 6(11):5944–5952

    Article  CAS  Google Scholar 

  21. Pandey GP, Rastogi AC (2012) Solid-state supercapacitors based on pulse polymerized poly(3,4-ethylenedioxythiophene) electrodes and ionic liquid gel polymer electrolyte. J Electrochem Soc 159(10):A1664–A1671

    Article  CAS  Google Scholar 

  22. Pandey GP, Rastogi AC (2013) Synthesis and characterization of pulsed polymerized poly(3,4-ethylenedioxythiophene) electrodes for high-performance electrochemical capacitors. Electrochim Acta 87:158–168

    Article  CAS  Google Scholar 

  23. Pandey GP, Rastogi AC, Westgate CR (2014) All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte. J Power Sources 245:857–865

    Article  CAS  Google Scholar 

  24. Li Y, Zhao K, Du X, Wang ZD, Hao XG, Liu SB, Guan GQ (2012) Capacitance behaviors of nanorod polyaniline films controllably synthesized by using a novel unipolar pulse electro-polymerization method. Synth Met 162(1-2):107–113

    Article  CAS  Google Scholar 

  25. Du X, Hao XG, Wang ZD, Ma XL, Guan GQ, Abuliti A, Ma GZ, Liu SB (2013) Highly stable polypyrrole film prepared by unipolar pulse electro-polymerization method as electrode for electrochemical supercapacitor. Synth Met 175:138–145

    Article  CAS  Google Scholar 

  26. Karnjanakom S, Ma YF, Guan GQ, Phanthong P, Hao XG, Du X, Samart C, Abudula A (2014) Fabrication of nickel hexacyanoferrate film on carbon fibers by unipolar pulse electrodeposition method for electrochemically switched ion exchange application. Electrochim Acta 139:36–41

    Article  CAS  Google Scholar 

  27. Mao XL, Yang WY, He X, Chen Y, Zhao YT, Zhou YJ, Yang YJ, Xu JH (2017) The preparation and characteristic of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposite and its application for supercapacitor electrode. Mater Sci Eng B 216:16–22

    Article  CAS  Google Scholar 

  28. Aradilla D, Estrany F, Armelin E, Alemán EC (2012) Ultraporous poly(3,4-ethylenedioxythiophene) for nanometric electrochemical supercapacitor. Thin Solid Films 520(13):4402–4409

    Article  CAS  Google Scholar 

  29. Jacob D, Mini PA, Balakrishnan A, Nair SV, Subramanian KRV (2014) Electrochemical behaviour of graphene-poly(3,4-ethylenedioxythiophene) (PEDOT) composite electrodes for supercapacitor applications. Bull Mater Sci 37(1):61–69

    Article  CAS  Google Scholar 

  30. Zhou CF, Liu ZW, Du XS, Ringer SP (2010) Electrodeposited PEDOT films on ITO with a flower-like hierarchical structure. Synth Met 160(15-16):1636–1641

    Article  CAS  Google Scholar 

  31. Bhat DK, Kumar MS (2007) N and p doped poly(3,4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors. J Mater Sci 42(19):8158–8162

    Article  CAS  Google Scholar 

  32. Mukkabla R, Deepa M, Srivastava AK (2015) Poly(3,4-ethylenedioxythiophene)/nickel disulfide microspheres hybrid in energy storage and conversion cells. RSC Adv 5(120):99164–99178

    Article  CAS  Google Scholar 

  33. Patra S, Munichandraiah N (2007) Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate. J Appl Polym Sci 106(2):1160–1171

    Article  CAS  Google Scholar 

  34. Vadiyar MM, Kolekar SS, Chang JY, Kashale AA, Ghule AV (2016) Reflux condensation mediated deposition of Co3O4 nanosheets and ZnFe2O4 nanoflakes electrodes for flexible asymmetric supercapacitor. Electrochim Acta 222:1604–1615

    Article  CAS  Google Scholar 

  35. Jian X, Yang HM, Li JG, Zhang EH, Cao LL, Liang ZH (2017) Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode. Electrochim Acta 228:483–493

    Article  CAS  Google Scholar 

  36. Chu CY, Tsai JT, Sun CL (2012) Synthesis of PEDOT-modified graphene composite materials as flexible electrodes for energy storage and conversion applications. Int J Hydrog Energy 37(18):13880–13886

    Article  CAS  Google Scholar 

  37. Zhou HH, Han GY, Fu DY, Chang YZ, Xiao YM, Zhai HJ (2014) Petal-shaped poly (3,4-ethylenedioxythiophene)/sodium dodecyl sulfate-graphene oxide intercalation composites for high-performance electrochemical energy storage. J Power Sources 272:203–210

    Article  CAS  Google Scholar 

  38. Song JB, Yuan QP, Liu XS, Wang D, Fu F, Yang WB (2015) Combination of nitrogen plasma modification and waterborne polyurethane treatment of carbon Fiber paper used for electric heating of wood floors. Bioresources 10(3):5820–5829

    CAS  Google Scholar 

  39. Belous A, Kolbasov G, Kovalenko L, Boldyrev E, Kobylianska S, Liniova B (2018) All solid-state battery based on ceramic oxide electrolytes with perovskite and NASICON structure. J Solid State Electrochem 22(8):2315–2320

    Article  CAS  Google Scholar 

  40. Zhang Q, Liu XH, Yin L, Chen PH, Wang YL, Yan TY (2018) Electrochemical impedance spectroscopy on the capacitance of ionic liquid-acetonitrile electrolytes. Electrochim Acta 270:352–362

    Article  CAS  Google Scholar 

  41. Maheshwari A, Heck M, Santarelli M (2018) Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy. Electrochim Acta 273:335–348

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the National Natural Science Foundation of China (NNSFC, No. 21304065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Xiao Liu.

Additional information

Highlights

A simple unipolar pulse electro-polymerization was successfully applied to prepare PEDOT films.

The PEDOT had been fabricated over porous carbon paper (CP), stainless steel mesh (SSM), stainless steel (SS), and indium tin oxide (ITO).

The PEDOT deposited on the four substrates has obviously different properties. Compared the three others, PEDOT/CP exhibited the best electrochemical performance with a specific capacitance of 126.24 F/g at a current density of 1 mA/cm2.

Electronic supplementary material

ESM 1

(DOCX 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H.Y., Liu, X.X., Ren, Z. et al. Capacitance characteristic of PEDOT electrodeposited on different substrates. J Solid State Electrochem 22, 3947–3954 (2018). https://doi.org/10.1007/s10008-018-4104-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4104-y

Keywords

Navigation