Skip to main content
Log in

Electroreduction as a viable strategy to obtain TiO2 nanotube films with preferred anatase crystal orientation and its impact on photoelectrochemical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Preferential orientation of anatase crystals in TiO2 nanotube (TNT) films was induced through an electroreduction pre-treatment prior to annealing at 450 °C in atmospheric air. This pre-treatment consisted of applying a cathodic potential between − 1 and −6 V vs. SCE, using either continuous or pulsed form. Relative to TNTs without pre-treatment, XRD characterization revealed that the ratio of intensities for anatase planes (004) and (101), I(004)/I(101), increased around five times when pulsed electroreduction was carried out at − 3 V versus SCE in a 0.1 M Na2SO4 solution, compared to that obtained without the pre-treatment. Since additional ions were not included in the electrolyte, this result demonstrated that pulsed electroreduction could be used as a simple strategy to preferentially orient TiO2 anatase crystals. However, it was also found that the induction of a preferred crystal orientation in the [001] direction negatively affected TNT photoelectrochemical performance. This response could be attributed to changes induced on the film during the electroreduction process, since electrochemical characterization showed that the electrical and semiconducting properties of the TNTs were drastically modified after pre-treatment. Therefore, these findings reveal that TNT preferential orientation in the [001] direction is not necessarily associated with improved photoelectrochemical behavior and that TNT photoresponse is strongly influenced by the methodology used to achieve such crystalline orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939

    Article  CAS  Google Scholar 

  2. Acevedo-Peña P, González F, González G, González I (2014) The effect of anatase crystal orientation on the photoelectrochemical performance of anodic TiO2 nanotubes. Phys Chem Chem Phys 16(47):26213–26220. https://doi.org/10.1039/C4CP03930K

    Article  Google Scholar 

  3. Lee S, Park I, Kim D, Seong W, Kim DW, Han G, Kim JY, Jung H, Hong K (2012) Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion. Energy Environ Sci 5:7989–7995

    Article  CAS  Google Scholar 

  4. Huang J, Tan X, Yu T, Zhao L, Hu W (2014) Enhanced photoelectrocatalytic and photoelectrochemical properties by high-reactive TiO2/SrTiO3 hetero-structured nanotubes with dominant {001} facet of Anatase TiO2. Electrochim Acta 146:278–287. https://doi.org/10.1016/j.electacta.2014.09.043

    Article  CAS  Google Scholar 

  5. Yang Z, Ma Z, Pan D, Chen D, Xu F, Chen S (2014) Enhancing the performance of front-illuminated dye-sensitized solar cells with highly [001] oriented, single-crystal-like TiO2 nanotube arrays. Ceram Int 40(1):173–180. https://doi.org/10.1016/j.ceramint.2013.05.119

    Article  CAS  Google Scholar 

  6. John A, Naduvath J, Mallick S, Pledger J, Remillar S, DeYoung P, Thankamoniamma M, Philip R (2016) Electrochemical synthesis of novel Zn-doped TiO2 nanotube/ZnO nanoflake heterostructure with enhanced DSSC efficiency. Nano-Micro Lett 8(4):381–387. https://doi.org/10.1007/s40820-016-0099-z

    Article  Google Scholar 

  7. Pan D, Huang H, Wang X, Wang L, Liao H, Li Z, Wu M (2014) C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors. J Mater Chem A 2(29):11454–11464. https://doi.org/10.1039/C4TA01613K

    Article  CAS  Google Scholar 

  8. Jung MH, Chu MJ, Kang M (2012) TiO2 nanotube fabrication with highly exposed (001) facets for enhanced conversion efficiency of solar cells. Chem Commun 48(41):5016–5018. https://doi.org/10.1039/c2cc31047c

    Article  CAS  Google Scholar 

  9. Alivov Y, Fan Z (2009) A TiO2 nanostructure transformation: from ordered nanotubes to nanoparticles. Nanotechnology 20(40):405610. https://doi.org/10.1088/0957-4484/20/40/405610

    Article  Google Scholar 

  10. Sierra-Uribe JH, Córdoba-Tuta E, Acevedo-Peña P (2017) The effect of the heating rate on Anatase crystal orientation and its impact on the photoelectrocatalytic performance of TiO2 nanotube arrays. J Electrochem Soc 164:H279–H285

    Article  CAS  Google Scholar 

  11. John A, Naduvath J, Mallick S, Shripathi T, Thankamoniamm M, Philip R (2015) A novel cost effective fabrication technique for highly preferential oriented TiO2 nanotubes. Nano 7:20386–20390

    Google Scholar 

  12. Zhang Z, Hedhili M, Zhu H, Wang P (2013) Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys Chem Chem Phys 15(37):15637–15644. https://doi.org/10.1039/c3cp52759j

    Article  CAS  Google Scholar 

  13. Zhou H, Zhang Y (2014) Electrochemically self-doped TiO2 nanotube arrays for supercapacitors. J Phys Chem C 118(11):5626–5636. https://doi.org/10.1021/jp4082883

    Article  CAS  Google Scholar 

  14. Liao W, Yang J, Zhoua H, Murugananthan M, Zhang Y (2014) Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants. Electrochim Acta 136:310–317

    Article  CAS  Google Scholar 

  15. Chen X, Liu L, Huang F (2015) Black titanium dioxide (TiO2) nanomaterials. Chem Soc Rev 44(7):1861–1885. https://doi.org/10.1039/C4CS00330F

    Article  CAS  Google Scholar 

  16. Yang Y, Liao J, Li Y, Cao X, Li N, Wang C, Lin S (2016) Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study. RSC Adv 6:46871–46878

    Article  CAS  Google Scholar 

  17. Yun JH, Ng Y, Huang S, Conibeer G, Amal R (2011) Wrapping the walls of n-TiO2 nanotubes with p-CuInS2 nanoparticles using pulsed-electrodeposition for improved heterojunction photoelectrodes. Chem Commun 47:11288–11290

    Article  CAS  Google Scholar 

  18. Seferlis A, Kollia M, Neophytides S (2015) The in situ electrochemical stable promotion of photoelectrocatalytic activity of TiO2 by pulsed reductive doping: application in photoelectrochemical water splitting. J Electrochem Soc 162:H397–H402

    Article  CAS  Google Scholar 

  19. Carrera-Crespo JE, Rincón M, González F, Barrera E, González I (2016) Improving the contact properties of CdS-decorated TiO2 nanotube arrays using an electrochemical/thermal/chemical approach. J Solid State Electrochem 20:2713–2723

    Article  CAS  Google Scholar 

  20. Acevedo-Peña P, Carrera-Crespo JE, González F, González I (2014) Effect of heat treatment on the crystal phase composition, semiconducting properties and photoelectrocatalytic color removal efficiency of TiO2 nanotubes arrays. Electrochim Acta 140:564–571. https://doi.org/10.1016/j.electacta.2014.06.056

    Article  Google Scholar 

  21. Park I, Kim D, Seong W, Han B, Jung H, Yang M, Fan W, Lee S, Lee JH, Hong K (2015) Observation of anatase nanograins crystallizing from anodic amorphous TiO2 nanotubes. CrystEngComm 17(38):7346–7353. https://doi.org/10.1039/C5CE01165E

    Article  CAS  Google Scholar 

  22. Regonini D, Groff A, Sorarù GD, Clemens FJ (2015) Photoelectrochemical study of anodized TiO2 nanotubes prepared using low and high H2O. Electrochim Acta 186:101–111. https://doi.org/10.1016/j.electacta.2015.10.162

    Article  CAS  Google Scholar 

  23. Regonini D, Groff A, Sorarù GD, Clemens FJ (2016) Suppressing deep traps in self-organized TiO2 nanotubes by Nb doping and optimized water content. J Electrochem Soc 163(3):H243–H251. https://doi.org/10.1149/2.0131605jes

    Article  CAS  Google Scholar 

  24. Yahia S, Hamadou L, Kadri A, Benbrahim N, Sutter E (2012) Effect of anodizing potential on the formation and EIS characteristics of TiO2 nanotube arrays. J Electrochem Soc 159:K83–K92

    Article  CAS  Google Scholar 

  25. Amano F, Nakata M, Yamamoto A, Tanaka T (2016) Effect of Ti3+ ions and conduction band electrons on photocatalytic and photoelectrochemical activity of rutile titania for water oxidation. J Phys Chem C 120(12):6467–6474. https://doi.org/10.1021/acs.jpcc.6b01481

    Article  CAS  Google Scholar 

  26. Wu L, Bresser D, Buchholz D, Giffin G, Castro C, Ochel A, Passerini S (2015) Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv Energy Mater 5(2):1401142. https://doi.org/10.1002/aenm.201401142

    Article  Google Scholar 

  27. Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Barea E, Palomares E (2008) A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorg Chim Acta 361(3):684–698. https://doi.org/10.1016/j.ica.2007.05.032

    Article  CAS  Google Scholar 

  28. Jankulovska M, Berger T, Wong S, Gomez R, Lana-Villarreal T (2012) Trap states in TiO2 films made of nanowires, nanotubes or nanoparticles: an electrochemical study. ChemPhysChem 1:3008–3017

    Article  Google Scholar 

  29. Bessegato G, Hudari F, Boldrin M (2017) Self-doped TiO2 nanotube electrodes: a powerful tool as a sensor platform for electroanalytical applications. Electrochim Acta 235:527–533

    Article  CAS  Google Scholar 

  30. Nischk M, Mazierski P, Wei Z, Siuzdak K, Kouame N, Kowalska E, Remita H, Zaleska-Medynska A (2016) Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction. Appl Surf Sci 387:89–102. https://doi.org/10.1016/j.apsusc.2016.06.066

    Article  CAS  Google Scholar 

  31. Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Ferriols N, Bogdanoff P, Pereira E (2000) Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 Nanoporous in aqueous solution. J Phys Chem B 104(10):2287–2298. https://doi.org/10.1021/jp993148h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to project CONACYT-México (270810) for the financial support. The authors thank LDRX (T 128) UAM-I for the XRD measurements. The authors thank the Laboratorio Nacional de Conversión y Almacenamiento de Energía (LNCAE) for some of the infrastructure required for material characterization.

Funding

Harrison Sierra-Uribe would like to thank Colciencias and Vicerrectoría de Investigación y Extensión from Universidad Industrial de Santander for the financial support provided through the “Jóvenes Investigadores” fellowship (Convocatoria No.706, 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Próspero Acevedo-Peña.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sierra-Uribe, H., Carrera-Crespo, J.E., Cano, A. et al. Electroreduction as a viable strategy to obtain TiO2 nanotube films with preferred anatase crystal orientation and its impact on photoelectrochemical performance. J Solid State Electrochem 22, 1881–1891 (2018). https://doi.org/10.1007/s10008-018-3890-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3890-6

Keywords

Navigation